IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i15p2621-d872863.html
   My bibliography  Save this article

Generalized Three-Step Numerical Methods for Solving Equations in Banach Spaces

Author

Listed:
  • Michael I. Argyros

    (Department of Computer Science, University of Oklahoma, Norman, OK 73019, USA)

  • Ioannis K. Argyros

    (Department of Mathematical Sciences, Cameron University, Lawton, OK 73505, USA)

  • Samundra Regmi

    (Department of Mathematics, University of Houston, Houston, TX 77204, USA)

  • Santhosh George

    (Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka, Mangaluru 575 025, India)

Abstract

In this article, we propose a new methodology to construct and study generalized three-step numerical methods for solving nonlinear equations in Banach spaces. These methods are very general and include other methods already in the literature as special cases. The convergence analysis of the specialized methods is been given by assuming the existence of high-order derivatives which are not shown in these methods. Therefore, these constraints limit the applicability of the methods to equations involving operators that are sufficiently many times differentiable although the methods may converge. Moreover, the convergence is shown under a different set of conditions. Motivated by the optimization considerations and the above concerns, we present a unified convergence analysis for the generalized numerical methods relying on conditions involving only the operators appearing in the method. This is the novelty of the article. Special cases and examples are presented to conclude this article.

Suggested Citation

  • Michael I. Argyros & Ioannis K. Argyros & Samundra Regmi & Santhosh George, 2022. "Generalized Three-Step Numerical Methods for Solving Equations in Banach Spaces," Mathematics, MDPI, vol. 10(15), pages 1-28, July.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2621-:d:872863
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/15/2621/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/15/2621/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhanlav, T. & Otgondorj, Kh., 2021. "Higher order Jarratt-like iterations for solving systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    2. Xiao, Xiaoyong & Yin, Hongwei, 2017. "Achieving higher order of convergence for solving systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 251-261.
    3. Ioannis K. Argyros, 2021. "Unified Convergence Criteria for Iterative Banach Space Valued Methods with Applications," Mathematics, MDPI, vol. 9(16), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramandeep Behl & Ioannis K. Argyros & Fouad Othman Mallawi & Samaher Khalaf Alharbi, 2022. "Extending the Applicability of Highly Efficient Iterative Methods for Nonlinear Equations and Their Applications," Mathematics, MDPI, vol. 11(1), pages 1-18, December.
    2. Samundra Regmi & Ioannis K. Argyros & Santhosh George & Michael I. Argyros, 2022. "A Comparison Study of the Classical and Modern Results of Semi-Local Convergence of Newton–Kantorovich Iterations-II," Mathematics, MDPI, vol. 10(11), pages 1-12, May.
    3. Manoj K. Singh & Ioannis K. Argyros, 2022. "The Dynamics of a Continuous Newton-like Method," Mathematics, MDPI, vol. 10(19), pages 1-14, October.
    4. Santhosh George & Jidesh Padikkal & Krishnendu Remesh & Ioannis K. Argyros, 2022. "A New Parameter Choice Strategy for Lavrentiev Regularization Method for Nonlinear Ill-Posed Equations," Mathematics, MDPI, vol. 10(18), pages 1-24, September.
    5. Ramandeep Behl & Ioannis K. Argyros, 2020. "Local Convergence for Multi-Step High Order Solvers under Weak Conditions," Mathematics, MDPI, vol. 8(2), pages 1-14, February.
    6. Xiao, Xiao-Yong & Yin, Hong-Wei, 2018. "Accelerating the convergence speed of iterative methods for solving nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 8-19.
    7. Ioannis K. Argyros & Samundra Regmi & Stepan Shakhno & Halyna Yarmola, 2022. "A Methodology for Obtaining the Different Convergence Orders of Numerical Method under Weaker Conditions," Mathematics, MDPI, vol. 10(16), pages 1-16, August.
    8. Samundra Regmi & Ioannis K. Argyros & Santhosh George & Christopher I. Argyros, 2022. "A Comparison Study of the Classical and Modern Results of Semi-Local Convergence of Newton-Kantorovich Iterations," Mathematics, MDPI, vol. 10(8), pages 1-14, April.
    9. Janak Raj Sharma & Harmandeep Singh & Ioannis K. Argyros, 2022. "A Unified Local-Semilocal Convergence Analysis of Efficient Higher Order Iterative Methods in Banach Spaces," Mathematics, MDPI, vol. 10(17), pages 1-16, September.
    10. Ioannis K. Argyros & Christopher Argyros & Johan Ceballos & Daniel González, 2022. "Extended Comparative Study between Newton’s and Steffensen-like Methods with Applications," Mathematics, MDPI, vol. 10(16), pages 1-12, August.
    11. Janak Raj Sharma & Deepak Kumar & Ioannis K. Argyros, 2019. "Local Convergence and Attraction Basins of Higher Order, Jarratt-Like Iterations," Mathematics, MDPI, vol. 7(12), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2621-:d:872863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.