IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v276y2016icp266-277.html
   My bibliography  Save this article

Semilocal and local convergence of a fifth order iteration with Fréchet derivative satisfying Hölder condition

Author

Listed:
  • Singh, Sukhjit
  • Gupta, Dharmendra Kumar
  • Martínez, E.
  • Hueso, José L.

Abstract

The semilocal and local convergence in Banach spaces is described for a fifth order iteration for the solutions of nonlinear equations when the Fréchet derivative satisfies the Hölder condition. The Hölder condition generalizes the Lipschtiz condition. The importance of our work lies in the fact that many examples are available which fail to satisfy the Lipschtiz condition but satisfy the Hölder condition. The existence and uniqueness theorem is established with error bounds for the solution. The convergence analysis is finally worked out on different examples and convergence balls for each of them are obtained. These examples include nonlinear Hammerstein and Fredholm integral equations and a boundary value problem. It is found that the larger radius of convergence balls is obtained for all the examples in comparison to existing methods using stronger conditions.

Suggested Citation

  • Singh, Sukhjit & Gupta, Dharmendra Kumar & Martínez, E. & Hueso, José L., 2016. "Semilocal and local convergence of a fifth order iteration with Fréchet derivative satisfying Hölder condition," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 266-277.
  • Handle: RePEc:eee:apmaco:v:276:y:2016:i:c:p:266-277
    DOI: 10.1016/j.amc.2015.11.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315015647
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.11.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cordero, A. & Ezquerro, J.A. & Hernández-Verón, M.A. & Torregrosa, J.R., 2015. "On the local convergence of a fifth-order iterative method in Banach spaces," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 396-403.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hernández-Verón, M.A. & Yadav, Sonia & Martínez, Eulalia & Singh, Sukhjit, 2021. "Solving nonlinear integral equations with non-separable kernel via a high-order iterative process," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    2. Sukjith Singh & Eulalia Martínez & P. Maroju & Ramandeep Behl, 2020. "A study of the local convergence of a fifth order iterative method," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(2), pages 439-455, June.
    3. Abhimanyu Kumar & D. K. Gupta & Shwetabh Srivastava, 2017. "Influence of the Center Condition on the Two-Step Secant Method," International Journal of Analysis, Hindawi, vol. 2017, pages 1-9, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martínez, Eulalia & Singh, Sukhjit & Hueso, José L. & Gupta, Dharmendra K., 2016. "Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces," Applied Mathematics and Computation, Elsevier, vol. 281(C), pages 252-265.
    2. Sukhjit Singh & Eulalia Martínez & Abhimanyu Kumar & D. K. Gupta, 2020. "Domain of Existence and Uniqueness for Nonlinear Hammerstein Integral Equations," Mathematics, MDPI, vol. 8(3), pages 1-11, March.
    3. Janak Raj Sharma & Harmandeep Singh & Ioannis K. Argyros, 2022. "A Unified Local-Semilocal Convergence Analysis of Efficient Higher Order Iterative Methods in Banach Spaces," Mathematics, MDPI, vol. 10(17), pages 1-16, September.
    4. Lotfi, Taher & Assari, Paria, 2015. "New three- and four-parametric iterative with memory methods with efficiency index near 2," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 1004-1010.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:276:y:2016:i:c:p:266-277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.