IDEAS home Printed from https://ideas.repec.org/a/vrs/remava/v32y2024i2p100-111n1009.html
   My bibliography  Save this article

Comparison of Machine Learning Algorithms for Mass Appraisal of Real Estate Data

Author

Listed:
  • Sevgen Sibel Canaz

    (Department of Real Estate Development and Management, Ankara University, Emniyet, Dögol Cd., 0600 Yenimahalle/Ankara, Turkey)

  • Tanrivermiş Yeşim

    (Department of Real Estate Development and Management, Ankara University, Emniyet, Dögol Cd., 0600 Yenimahalle/Ankara, Turkey)

Abstract

In recent years, machine learning algorithms have been used in the mass appraisal of real estate. In this study, 5 machine learning algorithms are used for residential type real estate. Machine learning algorithms used for mass appraisal in this study are Artificial Neural Networks (ANN), Random Forest (RO), Multiple Regression Analysis (MRA), K-Nearest Neighborhood (k-nn), Support Vector Regression (SVR). To test the study, real estate data collected from the central districts of Ankara, were used. The main purpose of this study is to find out which machine learning algorithm gives the best results for the mass appraisal of real estates and to reveal the most important variables that affect the prices of real estate. According to the results obtained for the city of Ankara, it was observed that the best algorithm for mass appraisal is RF in residential-type real estates, followed by the ANN, k-nn, and linear regression algorithms, respectively. According to the results obtained from the residential real estate, it was concluded that heating and distances to places of importance had the greatest effect on the value.

Suggested Citation

  • Sevgen Sibel Canaz & Tanrivermiş Yeşim, 2024. "Comparison of Machine Learning Algorithms for Mass Appraisal of Real Estate Data," Real Estate Management and Valuation, Sciendo, vol. 32(2), pages 100-111.
  • Handle: RePEc:vrs:remava:v:32:y:2024:i:2:p:100-111:n:1009
    DOI: 10.2478/remav-2024-0019
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/remav-2024-0019
    Download Restriction: no

    File URL: https://libkey.io/10.2478/remav-2024-0019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Unel, Fatma Bunyan & Yalpir, Sukran, 2023. "Sustainable tax system design for use of mass real estate appraisal in land management," Land Use Policy, Elsevier, vol. 131(C).
    2. Sebastian Gnat, 2021. "Property Mass Valuation on Small Markets," Land, MDPI, vol. 10(4), pages 1-14, April.
    3. P. M. Lerman, 1980. "Fitting Segmented Regression Models by Grid Search," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(1), pages 77-84, March.
    4. Elaine M. Worzala & Margarita Lenk & Ana Silva, 1995. "An Exploration of Neural Networks and Its Application to Real Estate Valuation," Journal of Real Estate Research, American Real Estate Society, vol. 10(2), pages 185-202.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juergen Deppner & Marcelo Cajias, 2024. "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 68(2), pages 235-273, February.
    2. Ali Azadeh & Mohammad Sheikhalishahi & Ali Boostani, 2014. "A Flexible Neuro-Fuzzy Approach for Improvement of Seasonal Housing Price Estimation in Uncertain and Non-Linear Environments," South African Journal of Economics, Economic Society of South Africa, vol. 82(4), pages 567-582, December.
    3. Baker, Bruce D., 2001. "Can flexible non-linear modeling tell us anything new about educational productivity?," Economics of Education Review, Elsevier, vol. 20(1), pages 81-92, February.
    4. Shuofen Hsu & Chaohsin Lin & Yaling Yang, 2008. "Integrating Neural Networks for Risk‐Adjustment Models," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(3), pages 617-642, September.
    5. Tien Foo Sing & Jesse Jingye Yang & Shi Ming Yu, 2022. "Boosted Tree Ensembles for Artificial Intelligence Based Automated Valuation Models (AI-AVM)," The Journal of Real Estate Finance and Economics, Springer, vol. 65(4), pages 649-674, November.
    6. Núñez Tabales, Julia M. & Caridad y Ocerin, José María & Rey Carmona, Francisco J., 2013. "Artificial Neural Networks for Predicting Real Estate Prices || Redes neuronales artificiales para la predicción de precios inmobiliarios," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 15(1), pages 29-44, June.
    7. Milyausha R. Pinskaya & Rodion V. Balakin, 2023. "Fiscal Implications of a Complete Conversion to Taxation of Property of Organizations in Russia on the Basis of Cadastral Value," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 22(4), pages 834-860.
    8. Fan, Xudong & Wang, Xiaowei & Zhang, Xijin & ASCE Xiong (Bill) Yu, P.E.F., 2022. "Machine learning based water pipe failure prediction: The effects of engineering, geology, climate and socio-economic factors," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    9. Maurizio d’Amato, 2007. "Comparing Rough Set Theory with Multiple Regression Analysis as Automated Valuation Methodologies," International Real Estate Review, Global Social Science Institute, vol. 10(2), pages 42-65.
    10. Adham Alsharkawi & Mohammad Al-Fetyani & Maha Dawas & Heba Saadeh & Musa Alyaman, 2021. "Poverty Classification Using Machine Learning: The Case of Jordan," Sustainability, MDPI, vol. 13(3), pages 1-16, January.
    11. Ben Q. Liu & Dale L. Goodhue, 2012. "Two Worlds of Trust for Potential E-Commerce Users: Humans as Cognitive Misers," Information Systems Research, INFORMS, vol. 23(4), pages 1246-1262, December.
    12. Manuel Landajo & Celia Bilbao & Amelia Bilbao, 2012. "Nonparametric neural network modeling of hedonic prices in the housing market," Empirical Economics, Springer, vol. 42(3), pages 987-1009, June.
    13. Jose Torres-Pruñonosa & Pablo García-Estévez & Josep Maria Raya & Camilo Prado-Román, 2022. "How on Earth Did Spanish Banking Sell the Housing Stock?," SAGE Open, , vol. 12(1), pages 21582440221, March.
    14. Chen Huann-Sheng & Zeichner Sarah & Anderson Robert N. & Espey David K. & Kim Hyune-Ju & Feuer Eric J., 2020. "The Joinpoint-Jump and Joinpoint-Comparability Ratio Model for Trend Analysis with Applications to Coding Changes in Health Statistics," Journal of Official Statistics, Sciendo, vol. 36(1), pages 49-62, March.
    15. Camilo Serrano & Martin Hoesli, 2010. "Are Securitized Real Estate Returns more Predictable than Stock Returns?," The Journal of Real Estate Finance and Economics, Springer, vol. 41(2), pages 170-192, August.
    16. Tan, Xiujie & Xiao, Ziwei & Liu, Yishuang & Taghizadeh-Hesary, Farhad & Wang, Banban & Dong, Hanmin, 2022. "The effect of green credit policy on energy efficiency: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    17. Muñoz, J.F. & Arcos, A. & Álvarez, E. & Rueda, M., 2014. "New ratio and difference estimators of the finite population distribution function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 102(C), pages 51-61.
    18. Craig Ellis & Patrick J. Wilson & Ralf Zurbruegg, 2007. "Real Estate ‘Value’ Stocks and International Diversification," Journal of Property Research, Taylor & Francis Journals, vol. 24(3), pages 265-287, September.
    19. Suwon Song & Chun Gun Park, 2019. "Alternative Algorithm for Automatically Driving Best-Fit Building Energy Baseline Models Using a Data—Driven Grid Search," Sustainability, MDPI, vol. 11(24), pages 1-11, December.
    20. Yu, Binbing & Barrett, Michael J. & Kim, Hyune-Ju & Feuer, Eric J., 2007. "Estimating joinpoints in continuous time scale for multiple change-point models," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2420-2427, February.

    More about this item

    Keywords

    mass appraisal; machine learning algorithms; random forest; artificial neural network; real estate valuation map;
    All these keywords.

    JEL classification:

    • R39 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:remava:v:32:y:2024:i:2:p:100-111:n:1009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.