IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i3p288-d726992.html
   My bibliography  Save this article

Modeling of Hyperparameter Tuned Deep Learning Model for Automated Image Captioning

Author

Listed:
  • Mohamed Omri

    (Deanship of Scientific Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Sayed Abdel-Khalek

    (Mathematics Department, Faculty of Science, Taif University, Taif 21944, Saudi Arabia
    Mathematics Department, Faculty of Science, Sohag University, Sohag 82524, Egypt)

  • Eied M. Khalil

    (Department of Mathematics, Faculty of Science, Taif University, Taif 21944, Saudi Arabia
    Mathematics Department, Faculty of Science, Azhar University, Cairo 11884, Egypt)

  • Jamel Bouslimi

    (Physics Department, Faculty of Science, Taif University, Taif 21944, Saudi Arabia)

  • Gyanendra Prasad Joshi

    (Department of Computer Science and Engineering, Sejong University, Seoul 05006, Korea)

Abstract

Image processing remains a hot research topic among research communities due to its applicability in several areas. An important application of image processing is the automatic image captioning technique, which intends to generate a proper description of an image in a natural language automated. Image captioning is a recently developed hot research topic, and it started to receive significant attention in the field of computer vision and natural language processing (NLP). Since image captioning is considered a challenging task, the recently developed deep learning (DL) models have attained significant performance with increased complexity and computational cost. Keeping these issues in mind, in this paper, a novel hyperparameter tuned DL for automated image captioning (HPTDL-AIC) technique is proposed. The HPTDL-AIC technique encompasses two major parts, namely encoder and decoder. The encoder part utilizes Faster SqueezNet with the RMSProp model to generate an effective depiction of the input image via insertion into a predefined length vector. At the same time, the decoder unit employs a bird swarm algorithm (BSA) with long short-term memory (LSTM) model to concentrate on the generation of description sentences. The design of RMSProp and BSA for the hyperparameter tuning process of the Faster SqueezeNet and LSTM models for image captioning shows the novelty of the work, which helps to accomplish enhanced image captioning performance. The experimental validation of the HPTDL-AIC technique is carried out against two benchmark datasets, and the extensive comparative study pointed out the improved performance of the HPTDL-AIC technique over recent approaches.

Suggested Citation

  • Mohamed Omri & Sayed Abdel-Khalek & Eied M. Khalil & Jamel Bouslimi & Gyanendra Prasad Joshi, 2022. "Modeling of Hyperparameter Tuned Deep Learning Model for Automated Image Captioning," Mathematics, MDPI, vol. 10(3), pages 1-20, January.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:3:p:288-:d:726992
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/3/288/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/3/288/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanyan Fan & Yu Zhang & Baosu Guo & Xiaoyuan Luo & Qingjin Peng & Zhenlin Jin, 2022. "A Hybrid Sparrow Search Algorithm of the Hyperparameter Optimization in Deep Learning," Mathematics, MDPI, vol. 10(16), pages 1-23, August.
    2. Ying Li & Ye Tang, 2023. "Novel Creation Method of Feature Graphics for Image Generation Based on Deep Learning Algorithms," Mathematics, MDPI, vol. 11(7), pages 1-17, March.
    3. Antoinette Deborah Martin & Ezat Ahmadzadeh & Inkyu Moon, 2022. "Privacy-Preserving Image Captioning with Deep Learning and Double Random Phase Encoding," Mathematics, MDPI, vol. 10(16), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:3:p:288-:d:726992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.