IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i3p359-d1324429.html
   My bibliography  Save this article

Dynamics of a Stochastic SEIR Epidemic Model with Vertical Transmission and Standard Incidence

Author

Listed:
  • Ruichao Li

    (College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China)

  • Xiurong Guo

    (Department of Basic Courses, Shandong University of Science and Technology, Tai’an 271019, China)

Abstract

A stochastic SEIR epidemic model with standard incidence and vertical transmission was developed in this work. The primary goal of this study was to determine whether stochastic environmental disturbances affect dynamic features of the epidemic model. The existence, uniqueness, and boundedness of global positive solutions are stated. A threshold was determined for the extinction of the infectious disease. After that, the existence and uniqueness of an ergodic stationary distribution were verified by determining the correct Lyapunov function. Ultimately, theoretical outcomes of numerical simulations are shown.

Suggested Citation

  • Ruichao Li & Xiurong Guo, 2024. "Dynamics of a Stochastic SEIR Epidemic Model with Vertical Transmission and Standard Incidence," Mathematics, MDPI, vol. 12(3), pages 1-17, January.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:3:p:359-:d:1324429
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/3/359/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/3/359/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Yanli & Yuan, Sanling & Zhao, Dianli, 2016. "Threshold behavior of a stochastic SIS model with Le´vy jumps," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 255-267.
    2. Qi, Haokun & Meng, Xinzhu, 2021. "Mathematical modeling, analysis and numerical simulation of HIV: The influence of stochastic environmental fluctuations on dynamics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 700-719.
    3. Huyi Wang & Ge Zhang & Tao Chen & Zhiming Li, 2023. "Threshold Analysis of a Stochastic SIRS Epidemic Model with Logistic Birth and Nonlinear Incidence," Mathematics, MDPI, vol. 11(7), pages 1-17, April.
    4. Jin, Xihua & Jia, Jianwen, 2020. "Qualitative study of a stochastic SIRS epidemic model with information intervention," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    5. Xuan Leng & Asad Khan & Anwarud Din, 2023. "Probability Analysis of a Stochastic Non-Autonomous SIQRC Model with Inference," Mathematics, MDPI, vol. 11(8), pages 1-18, April.
    6. Mao, Xuerong & Marion, Glenn & Renshaw, Eric, 2002. "Environmental Brownian noise suppresses explosions in population dynamics," Stochastic Processes and their Applications, Elsevier, vol. 97(1), pages 95-110, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bao, Kangbo & Zhang, Qimin & Rong, Libin & Li, Xining, 2019. "Dynamics of an imprecise SIRS model with Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 489-506.
    2. Wang, Yan & Qi, Kai & Jiang, Daqing, 2021. "An HIV latent infection model with cell-to-cell transmission and stochastic perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    3. Zeng, Ting & Teng, Zhidong & Li, Zhiming & Hu, Junna, 2018. "Stability in the mean of a stochastic three species food chain model with general Le´vy jumps," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 258-265.
    4. Lu, Minmin & Wang, Yan & Jiang, Daqing, 2021. "Stationary distribution and probability density function analysis of a stochastic HIV model with cell-to-cell infection," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    5. Tong, Jinying & Zhang, Zhenzhong & Bao, Jianhai, 2013. "The stationary distribution of the facultative population model with a degenerate noise," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 655-664.
    6. Huang, Zaitang & Cao, Junfei, 2018. "Ergodicity and bifurcations for stochastic logistic equation with non-Gaussian Lévy noise," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 1-10.
    7. Shi, Zhenfeng & Zhang, Xinhong & Jiang, Daqing, 2019. "Dynamics of an avian influenza model with half-saturated incidence," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 399-416.
    8. Liu, Meng & Wang, Ke, 2009. "Survival analysis of stochastic single-species population models in polluted environments," Ecological Modelling, Elsevier, vol. 220(9), pages 1347-1357.
    9. Qi, Kai & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Virus dynamic behavior of a stochastic HIV/AIDS infection model including two kinds of target cell infections and CTL immune responses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 548-570.
    10. Hu, Guixin & Li, Yanfang, 2015. "Asymptotic behaviors of stochastic periodic differential equation with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 264(C), pages 403-416.
    11. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Ahmad, Bashir, 2017. "Stationary distribution and extinction of a stochastic SEIR epidemic model with standard incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 58-69.
    12. Roy, Jyotirmoy & Alam, Shariful, 2020. "Fear factor in a prey–predator system in deterministic and stochastic environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    13. Liu, Qun & Jiang, Daqing, 2020. "Threshold behavior in a stochastic SIR epidemic model with Logistic birth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    14. Xie, Falan & Shan, Meijing & Lian, Xinze & Wang, Weiming, 2017. "Periodic solution of a stochastic HBV infection model with logistic hepatocyte growth," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 630-641.
    15. Qi, Haokun & Zhang, Shengqiang & Meng, Xinzhu & Dong, Huanhe, 2018. "Periodic solution and ergodic stationary distribution of two stochastic SIQS epidemic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 223-241.
    16. Liu, Yuting & Shan, Meijing & Lian, Xinze & Wang, Weiming, 2016. "Stochastic extinction and persistence of a parasite–host epidemiological model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 586-602.
    17. Gao, Yin & Gao, Jinwu & Yang, Xiangfeng, 2022. "The almost sure stability for uncertain delay differential equations based on normal lipschitz conditions," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    18. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Ergodic stationary distribution and extinction of a hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity under discrete Markov switching," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    19. Cao, Zhongwei & Shi, Yuee & Wen, Xiangdan & Liu, Liya & Hu, Jingwei, 2020. "Analysis of a hybrid switching SVIR epidemic model with vaccination and Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    20. Zhou, Baoquan & Zhang, Xinhong & Jiang, Daqing, 2020. "Dynamics and density function analysis of a stochastic SVI epidemic model with half saturated incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:3:p:359-:d:1324429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.