IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i15p2777-d880888.html
   My bibliography  Save this article

Graph Burning: Mathematical Formulations and Optimal Solutions

Author

Listed:
  • Jesús García-Díaz

    (Consejo Nacional de Ciencia y Tecnología, Mexico City 03940, Mexico
    Instituto Nacional de Astrofísica, Óptica y Electrónica, Coordinación de Ciencias Computacionales, Puebla 72840, Mexico)

  • Lil María Xibai Rodríguez-Henríquez

    (Consejo Nacional de Ciencia y Tecnología, Mexico City 03940, Mexico
    Instituto Nacional de Astrofísica, Óptica y Electrónica, Coordinación de Ciencias Computacionales, Puebla 72840, Mexico)

  • Julio César Pérez-Sansalvador

    (Consejo Nacional de Ciencia y Tecnología, Mexico City 03940, Mexico
    Instituto Nacional de Astrofísica, Óptica y Electrónica, Coordinación de Ciencias Computacionales, Puebla 72840, Mexico)

  • Saúl Eduardo Pomares-Hernández

    (Instituto Nacional de Astrofísica, Óptica y Electrónica, Coordinación de Ciencias Computacionales, Puebla 72840, Mexico
    Laboratoire d’Analyse et d’Architecture des Aystèmes du Centre National de la Recherche Scientifique (LAAS-CNRS), Université de Toulouse, INSA, F-31400 Toulouse, France)

Abstract

The graph burning problem is an NP-hard combinatorial optimization problem that helps quantify how vulnerable a graph is to contagion. This paper introduces three mathematical formulations of the problem: an integer linear program (ILP) and two constraint satisfaction problems (CSP1 and CSP2). Thanks to off-the-shelf optimization software, these formulations can be solved optimally over arbitrary graphs; this is relevant because the only algorithms designed to date for this problem are approximation algorithms and heuristics, which do not guarantee to find optimal solutions. We empirically compared the proposed formulations using random graphs and off-the-shelf optimization software. The results show that CSP1 and CSP2 tend to reach optimal solutions in less time than the ILP. Therefore, we executed them over some benchmark graphs of order at most 5908. The previously best-known solutions for some of these graphs were improved. We draw some empirical observations from the experimental results. For instance, we find the tendency: the larger the graph’s optimal solution, the more difficult it is to find it. Finally, the resulting set of optimal solutions might be helpful as a benchmark dataset for the performance evaluation of non-exact algorithms.

Suggested Citation

  • Jesús García-Díaz & Lil María Xibai Rodríguez-Henríquez & Julio César Pérez-Sansalvador & Saúl Eduardo Pomares-Hernández, 2022. "Graph Burning: Mathematical Formulations and Optimal Solutions," Mathematics, MDPI, vol. 10(15), pages 1-20, August.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2777-:d:880888
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/15/2777/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/15/2777/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. José Alejandro Cornejo Acosta & Jesús García Díaz & Ricardo Menchaca-Méndez & Rolando Menchaca-Méndez, 2020. "Solving the Capacitated Vertex K-Center Problem through the Minimum Capacitated Dominating Set Problem," Mathematics, MDPI, vol. 8(9), pages 1-16, September.
    2. Dorit S. Hochbaum & David B. Shmoys, 1985. "A Best Possible Heuristic for the k -Center Problem," Mathematics of Operations Research, INFORMS, vol. 10(2), pages 180-184, May.
    3. Liu, Huiqing & Zhang, Ruiting & Hu, Xiaolan, 2019. "Burning number of theta graphs," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 246-257.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbara Anthony & Vineet Goyal & Anupam Gupta & Viswanath Nagarajan, 2010. "A Plant Location Guide for the Unsure: Approximation Algorithms for Min-Max Location Problems," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 79-101, February.
    2. Zhuqi Miao & Balabhaskar Balasundaram & Eduardo L. Pasiliao, 2014. "An exact algorithm for the maximum probabilistic clique problem," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 105-120, July.
    3. Renbo Huang & Guirong Zhuo & Lu Xiong & Shouyi Lu & Wei Tian, 2023. "A Review of Deep Learning-Based Vehicle Motion Prediction for Autonomous Driving," Sustainability, MDPI, vol. 15(20), pages 1-43, October.
    4. Wei Ding & Ke Qiu, 2020. "Approximating the asymmetric p-center problem in parameterized complete digraphs," Journal of Combinatorial Optimization, Springer, vol. 40(1), pages 21-35, July.
    5. Sergio Cabello, 2023. "Faster distance-based representative skyline and k-center along pareto front in the plane," Journal of Global Optimization, Springer, vol. 86(2), pages 441-466, June.
    6. Abdul Suleman, 2017. "On ill-conceived initialization in archetypal analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 785-808, December.
    7. Randeep Bhatia & Sudipto Guha & Samir Khuller & Yoram J. Sussmann, 1998. "Facility Location with Dynamic Distance Functions," Journal of Combinatorial Optimization, Springer, vol. 2(3), pages 199-217, September.
    8. Yi Xu & Jigen Peng & Wencheng Wang & Binhai Zhu, 2018. "The connected disk covering problem," Journal of Combinatorial Optimization, Springer, vol. 35(2), pages 538-554, February.
    9. Viswanath Nagarajan & Baruch Schieber & Hadas Shachnai, 2020. "The Euclidean k -Supplier Problem," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 1-14, February.
    10. Gruia Călinescu & Xiaolang Wang, 2019. "Client assignment problems for latency minimization," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 889-900, April.
    11. Kobbi Nissim & Rann Smorodinsky & Moshe Tennenholtz, 2018. "Segmentation, Incentives, and Privacy," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1252-1268, November.
    12. Xuqing Bai & Hong Chang & Xueliang Li, 0. "More on limited packings in graphs," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-19.
    13. Hinojosa, Yolanda & Marín, Alfredo & Puerto, Justo, 2023. "Dynamically second-preferred p-center problem," European Journal of Operational Research, Elsevier, vol. 307(1), pages 33-47.
    14. Raphael Kramer & Manuel Iori & Thibaut Vidal, 2020. "Mathematical Models and Search Algorithms for the Capacitated p -Center Problem," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 444-460, April.
    15. Arindam Karmakar & Sandip Das & Subhas C. Nandy & Binay K. Bhattacharya, 2013. "Some variations on constrained minimum enclosing circle problem," Journal of Combinatorial Optimization, Springer, vol. 25(2), pages 176-190, February.
    16. Sándor P. Fekete & Joseph S. B. Mitchell & Karin Beurer, 2005. "On the Continuous Fermat-Weber Problem," Operations Research, INFORMS, vol. 53(1), pages 61-76, February.
    17. José Alejandro Cornejo Acosta & Jesús García Díaz & Ricardo Menchaca-Méndez & Rolando Menchaca-Méndez, 2020. "Solving the Capacitated Vertex K-Center Problem through the Minimum Capacitated Dominating Set Problem," Mathematics, MDPI, vol. 8(9), pages 1-16, September.
    18. Nicolas Dupin & Frank Nielsen & El-Ghazali Talbi, 2021. "Unified Polynomial Dynamic Programming Algorithms for P-Center Variants in a 2D Pareto Front," Mathematics, MDPI, vol. 9(4), pages 1-30, February.
    19. Dongyue Liang & Liquan Mei & James Willson & Wei Wang, 2016. "A simple greedy approximation algorithm for the minimum connected $$k$$ k -Center problem," Journal of Combinatorial Optimization, Springer, vol. 31(4), pages 1417-1429, May.
    20. Ye, Mao & Zhang, Peng & Nie, Lizhen, 2018. "Clustering sparse binary data with hierarchical Bayesian Bernoulli mixture model," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 32-49.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2777-:d:880888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.