IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v32y2020i2p444-460.html
   My bibliography  Save this article

Mathematical Models and Search Algorithms for the Capacitated p -Center Problem

Author

Listed:
  • Raphael Kramer

    (Departamento de Engenharia de Produção, Universidade Federal de Pernambuco, 50740-550 Recife, Brazil)

  • Manuel Iori

    (Dipartimento di Scienze e Metodi dell'Ingegneria, Università degli Studi di Modena e Reggio Emilia, 42122 Reggio Emilia, Italy)

  • Thibaut Vidal

    (Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900 Rio de Janeiro, Brazil)

Abstract

The capacitated p -center problem requires one to select p facilities from a set of candidates to service a number of customers, subject to facility capacity constraints, with the aim of minimizing the maximum distance between a customer and its associated facility. The problem is well known in the field of facility location, because of the many applications that it can model. In this paper, we solve it by means of search algorithms that iteratively seek the optimal distance by solving tailored subproblems. We present different mathematical formulations for the subproblems and improve them by means of several valid inequalities, including an effective one based on a 0–1 disjunction and the solution of subset sum problems. We also develop an alternative search strategy that finds a balance between traditional sequential search and binary search. This strategy limits the number of feasible subproblems to be solved and, at the same time, avoids large overestimates of the solution value, which are detrimental for the search. We evaluate the proposed techniques by means of extensive computational experiments on benchmark instances from the literature and new larger test sets. All instances from the literature with up to 402 vertices and integer distances are solved to proven optimality, including 13 open cases, and feasible solutions are found in 10 minutes for instances with up to 3,038 vertices.

Suggested Citation

  • Raphael Kramer & Manuel Iori & Thibaut Vidal, 2020. "Mathematical Models and Search Algorithms for the Capacitated p -Center Problem," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 444-460, April.
  • Handle: RePEc:inm:orijoc:v:32:y:2020:i:2:p:444-460
    DOI: 10.1287/ijoc.2019.0889
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ijoc.2019.0889
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2019.0889?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Valerio de Carvalho, J. M., 2002. "LP models for bin packing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 141(2), pages 253-273, September.
    2. Espejo, Inmaculada & Marín, Alfredo & Rodríguez-Chía, Antonio M., 2015. "Capacitated p-center problem with failure foresight," European Journal of Operational Research, Elsevier, vol. 247(1), pages 229-244.
    3. Albareda-Sambola, Maria & Díaz, Juan A. & Fernández, Elena, 2010. "Lagrangean duals and exact solution to the capacitated p-center problem," European Journal of Operational Research, Elsevier, vol. 201(1), pages 71-81, February.
    4. S. L. Hakimi, 1964. "Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph," Operations Research, INFORMS, vol. 12(3), pages 450-459, June.
    5. Sourour Elloumi & Martine Labbé & Yves Pochet, 2004. "A New Formulation and Resolution Method for the p-Center Problem," INFORMS Journal on Computing, INFORMS, vol. 16(1), pages 84-94, February.
    6. Dorit S. Hochbaum & David B. Shmoys, 1985. "A Best Possible Heuristic for the k -Center Problem," Mathematics of Operations Research, INFORMS, vol. 10(2), pages 180-184, May.
    7. Kaparis, Konstantinos & Letchford, Adam N., 2008. "Local and global lifted cover inequalities for the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 186(1), pages 91-103, April.
    8. Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2016. "Bin packing and cutting stock problems: Mathematical models and exact algorithms," European Journal of Operational Research, Elsevier, vol. 255(1), pages 1-20.
    9. Mordechai Jaeger & Jeff Goldberg, 1994. "Technical Note—A Polynomial Algorithm for the Equal Capacity p-Center Problem on Trees," Transportation Science, INFORMS, vol. 28(2), pages 167-175, May.
    10. E. Andrew Boyd, 1994. "Fenchel Cutting Planes for Integer Programs," Operations Research, INFORMS, vol. 42(1), pages 53-64, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hinojosa, Yolanda & Marín, Alfredo & Puerto, Justo, 2023. "Dynamically second-preferred p-center problem," European Journal of Operational Research, Elsevier, vol. 307(1), pages 33-47.
    2. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    3. Zheng, Ting & Grosse, Eric H. & Glock, Christoph H., 2022. "Exploring the potentials of using Eye Tracking in logistics: a systematic literature review and concept," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 136467, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Alejandro Cornejo Acosta & Jesús García Díaz & Ricardo Menchaca-Méndez & Rolando Menchaca-Méndez, 2020. "Solving the Capacitated Vertex K-Center Problem through the Minimum Capacitated Dominating Set Problem," Mathematics, MDPI, vol. 8(9), pages 1-16, September.
    2. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    3. Kramer, Arthur & Dell’Amico, Mauro & Iori, Manuel, 2019. "Enhanced arc-flow formulations to minimize weighted completion time on identical parallel machines," European Journal of Operational Research, Elsevier, vol. 275(1), pages 67-79.
    4. John Martinovic, 2022. "A note on the integrality gap of cutting and skiving stock instances," 4OR, Springer, vol. 20(1), pages 85-104, March.
    5. Wei Ding & Ke Qiu, 2020. "Approximating the asymmetric p-center problem in parameterized complete digraphs," Journal of Combinatorial Optimization, Springer, vol. 40(1), pages 21-35, July.
    6. Jesus Garcia-Diaz & Jairo Sanchez-Hernandez & Ricardo Menchaca-Mendez & Rolando Menchaca-Mendez, 2017. "When a worse approximation factor gives better performance: a 3-approximation algorithm for the vertex k-center problem," Journal of Heuristics, Springer, vol. 23(5), pages 349-366, October.
    7. Maxence Delorme & Manuel Iori, 2020. "Enhanced Pseudo-polynomial Formulations for Bin Packing and Cutting Stock Problems," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 101-119, January.
    8. John Martinovic & Markus Hähnel & Guntram Scheithauer & Waltenegus Dargie, 2022. "An introduction to stochastic bin packing-based server consolidation with conflicts," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 296-331, July.
    9. Bo Zhang & Jin Peng & Shengguo Li, 2021. "Minimax models for capacitated p-center problem in uncertain environment," Fuzzy Optimization and Decision Making, Springer, vol. 20(3), pages 273-292, September.
    10. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    11. Sierra-Paradinas, María & Soto-Sánchez, Óscar & Alonso-Ayuso, Antonio & Martín-Campo, F. Javier & Gallego, Micael, 2021. "An exact model for a slitting problem in the steel industry," European Journal of Operational Research, Elsevier, vol. 295(1), pages 336-347.
    12. Contreras, Ivan & Fernández, Elena & Reinelt, Gerhard, 2012. "Minimizing the maximum travel time in a combined model of facility location and network design," Omega, Elsevier, vol. 40(6), pages 847-860.
    13. Chandra Ade Irawan & Said Salhi & Zvi Drezner, 2016. "Hybrid meta-heuristics with VNS and exact methods: application to large unconditional and conditional vertex $$p$$ p -centre problems," Journal of Heuristics, Springer, vol. 22(4), pages 507-537, August.
    14. Lijun Wei & Zhixing Luo, & Roberto Baldacci & Andrew Lim, 2020. "A New Branch-and-Price-and-Cut Algorithm for One-Dimensional Bin-Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 428-443, April.
    15. Hinojosa, Yolanda & Marín, Alfredo & Puerto, Justo, 2023. "Dynamically second-preferred p-center problem," European Journal of Operational Research, Elsevier, vol. 307(1), pages 33-47.
    16. Oliveira, Washington A. & Fiorotto, Diego J. & Song, Xiang & Jones, Dylan F., 2021. "An extended goal programming model for the multiobjective integrated lot-sizing and cutting stock problem," European Journal of Operational Research, Elsevier, vol. 295(3), pages 996-1007.
    17. Christopher Hojny & Tristan Gally & Oliver Habeck & Hendrik Lüthen & Frederic Matter & Marc E. Pfetsch & Andreas Schmitt, 2020. "Knapsack polytopes: a survey," Annals of Operations Research, Springer, vol. 292(1), pages 469-517, September.
    18. Benati, Stefano & García, Sergio, 2012. "A p-median problem with distance selection," DES - Working Papers. Statistics and Econometrics. WS ws121913, Universidad Carlos III de Madrid. Departamento de Estadística.
    19. Nicolas Dupin & Frank Nielsen & El-Ghazali Talbi, 2021. "Unified Polynomial Dynamic Programming Algorithms for P-Center Variants in a 2D Pareto Front," Mathematics, MDPI, vol. 9(4), pages 1-30, February.
    20. Espejo, Inmaculada & Marín, Alfredo & Rodríguez-Chía, Antonio M., 2015. "Capacitated p-center problem with failure foresight," European Journal of Operational Research, Elsevier, vol. 247(1), pages 229-244.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:32:y:2020:i:2:p:444-460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.