IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i14p2523-d867199.html
   My bibliography  Save this article

Learning to Utilize Curiosity: A New Approach of Automatic Curriculum Learning for Deep RL

Author

Listed:
  • Zeyang Lin

    (Command Control Engineering College, Army Engineering University of PLA, Nanjing 210007, China)

  • Jun Lai

    (Command Control Engineering College, Army Engineering University of PLA, Nanjing 210007, China)

  • Xiliang Chen

    (Command Control Engineering College, Army Engineering University of PLA, Nanjing 210007, China)

  • Lei Cao

    (Command Control Engineering College, Army Engineering University of PLA, Nanjing 210007, China)

  • Jun Wang

    (Command Control Engineering College, Army Engineering University of PLA, Nanjing 210007, China)

Abstract

In recent years, reinforcement learning algorithms based on automatic curriculum learning have been increasingly applied to multi-agent system problems. However, in the sparse reward environment, the reinforcement learning agents get almost no feedback from the environment during the whole training process, which leads to a decrease in the convergence speed and learning efficiency of the curriculum reinforcement learning algorithm. Based on the automatic curriculum learning algorithm, this paper proposes a curriculum reinforcement learning method based on the curiosity model (CMCL). The method divides the curriculum sorting criteria into temporal-difference error and curiosity reward, uses the K-fold cross validation method to evaluate the difficulty priority of task samples, uses the Intrinsic Curiosity Module (ICM) to evaluate the curiosity priority of the task samples, and uses the curriculum factor to adjust the learning probability of the task samples. This study compares the CMCL algorithm with other baseline algorithms in cooperative-competitive environments, and the experimental simulation results show that the CMCL method can improve the training performance and robustness of multi-agent deep reinforcement learning algorithms.

Suggested Citation

  • Zeyang Lin & Jun Lai & Xiliang Chen & Lei Cao & Jun Wang, 2022. "Learning to Utilize Curiosity: A New Approach of Automatic Curriculum Learning for Deep RL," Mathematics, MDPI, vol. 10(14), pages 1-20, July.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:14:p:2523-:d:867199
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/14/2523/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/14/2523/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kexuan Lv & Xiaofei Pei & Ci Chen & Jie Xu, 2022. "A Safe and Efficient Lane Change Decision-Making Strategy of Autonomous Driving Based on Deep Reinforcement Learning," Mathematics, MDPI, vol. 10(9), pages 1-24, May.
    2. David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian Zhu & Merry H. Ma, 2022. "Deriving the Optimal Strategy for the Two Dice Pig Game via Reinforcement Learning," Stats, MDPI, vol. 5(3), pages 1-14, August.
    2. Xiaoyue Li & John M. Mulvey, 2023. "Optimal Portfolio Execution in a Regime-switching Market with Non-linear Impact Costs: Combining Dynamic Program and Neural Network," Papers 2306.08809, arXiv.org.
    3. Pedro Afonso Fernandes, 2024. "Forecasting with Neuro-Dynamic Programming," Papers 2404.03737, arXiv.org.
    4. Nathan Companez & Aldeida Aleti, 2016. "Can Monte-Carlo Tree Search learn to sacrifice?," Journal of Heuristics, Springer, vol. 22(6), pages 783-813, December.
    5. Yuchen Zhang & Wei Yang, 2022. "Breakthrough invention and problem complexity: Evidence from a quasi‐experiment," Strategic Management Journal, Wiley Blackwell, vol. 43(12), pages 2510-2544, December.
    6. Yassine Chemingui & Adel Gastli & Omar Ellabban, 2020. "Reinforcement Learning-Based School Energy Management System," Energies, MDPI, vol. 13(23), pages 1-21, December.
    7. Zhewei Zhang & Youngjin Yoo & Kalle Lyytinen & Aron Lindberg, 2021. "The Unknowability of Autonomous Tools and the Liminal Experience of Their Use," Information Systems Research, INFORMS, vol. 32(4), pages 1192-1213, December.
    8. Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
    9. JinHyo Joseph Yun & EuiSeob Jeong & Xiaofei Zhao & Sung Deuk Hahm & KyungHun Kim, 2019. "Collective Intelligence: An Emerging World in Open Innovation," Sustainability, MDPI, vol. 11(16), pages 1-15, August.
    10. Thomas P. Novak & Donna L. Hoffman, 2019. "Relationship journeys in the internet of things: a new framework for understanding interactions between consumers and smart objects," Journal of the Academy of Marketing Science, Springer, vol. 47(2), pages 216-237, March.
    11. Huang, Ruchen & He, Hongwen & Gao, Miaojue, 2023. "Training-efficient and cost-optimal energy management for fuel cell hybrid electric bus based on a novel distributed deep reinforcement learning framework," Applied Energy, Elsevier, vol. 346(C).
    12. Gokhale, Gargya & Claessens, Bert & Develder, Chris, 2022. "Physics informed neural networks for control oriented thermal modeling of buildings," Applied Energy, Elsevier, vol. 314(C).
    13. Li Xia, 2020. "Risk‐Sensitive Markov Decision Processes with Combined Metrics of Mean and Variance," Production and Operations Management, Production and Operations Management Society, vol. 29(12), pages 2808-2827, December.
    14. Sabrina Evans & Paolo Turrini, 2023. "Improving Strategic Decisions in Sequential Games by Exploiting Positional Similarity," Games, MDPI, vol. 14(3), pages 1-13, April.
    15. Neha Soni & Enakshi Khular Sharma & Narotam Singh & Amita Kapoor, 2019. "Impact of Artificial Intelligence on Businesses: from Research, Innovation, Market Deployment to Future Shifts in Business Models," Papers 1905.02092, arXiv.org.
    16. Wei-Chang Yeh & Yu-Hsin Hsieh & Chia-Ling Huang, 2022. "Newly Developed Flexible Grid Trading Model Combined ANN and SSO algorithm," Papers 2211.12839, arXiv.org.
    17. Yin, Linfei & He, Xiaoyu, 2023. "Artificial emotional deep Q learning for real-time smart voltage control of cyber-physical social power systems," Energy, Elsevier, vol. 273(C).
    18. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    19. Taejong Joo & Hyunyoung Jun & Dongmin Shin, 2022. "Task Allocation in Human–Machine Manufacturing Systems Using Deep Reinforcement Learning," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    20. Jikai Jin & Vasilis Syrgkanis, 2023. "Learning Causal Representations from General Environments: Identifiability and Intrinsic Ambiguity," Papers 2311.12267, arXiv.org, revised Feb 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:14:p:2523-:d:867199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.