IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v50y2013icp138-148.html
   My bibliography  Save this article

A heuristic approach to the design of fortified distribution networks

Author

Listed:
  • Li, Qingwei
  • Savachkin, Alex

Abstract

Lean distribution networks have been increasingly exposed to the risk of unpredicted disruptions causing significant economic forfeitures. At the same time, the existing literature features a limited number of studies which consider fortification of facilities for improving network reliability. In this paper, we develop a reliable uncapacitated fixed-charge location model with fortification to support the design of distribution networks. The model considers heterogeneous facility failure probabilities, one layer of supplier backup, and facility fortification within a finite budget. The problem is formulated as a nonlinear mixed integer programming model which is proved to be NP-hard. We develop a Lagrangian relaxation-based (LR) heuristic solution algorithm and demonstrate its computational efficiency for solving large-scale problems.

Suggested Citation

  • Li, Qingwei & Savachkin, Alex, 2013. "A heuristic approach to the design of fortified distribution networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 138-148.
  • Handle: RePEc:eee:transe:v:50:y:2013:i:c:p:138-148
    DOI: 10.1016/j.tre.2012.10.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554512000889
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2012.10.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marshall L. Fisher, 2004. "The Lagrangian Relaxation Method for Solving Integer Programming Problems," Management Science, INFORMS, vol. 50(12_supple), pages 1861-1871, December.
    2. Tingting Cui & Yanfeng Ouyang & Zuo-Jun Max Shen, 2010. "Reliable Facility Location Design Under the Risk of Disruptions," Operations Research, INFORMS, vol. 58(4-part-1), pages 998-1011, August.
    3. Scaparra, Maria P. & Church, Richard L., 2008. "An exact solution approach for the interdiction median problem with fortification," European Journal of Operational Research, Elsevier, vol. 189(1), pages 76-92, August.
    4. Li, Xiaopeng & Ouyang, Yanfeng, 2010. "A continuum approximation approach to reliable facility location design under correlated probabilistic disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 535-548, May.
    5. Cui, Tingting & Ouyang, Yanfeng & Shen, Zuo-Jun Max J, 2010. "Reliable Facility Location Design under the Risk of Disruptions," University of California Transportation Center, Working Papers qt5sh2c7pw, University of California Transportation Center.
    6. Peng, Peng & Snyder, Lawrence V. & Lim, Andrew & Liu, Zuli, 2011. "Reliable logistics networks design with facility disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1190-1211, September.
    7. Lawrence V. Snyder & Mark S. Daskin, 2005. "Reliability Models for Facility Location: The Expected Failure Cost Case," Transportation Science, INFORMS, vol. 39(3), pages 400-416, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azad, Nader & Hassini, Elkafi, 2019. "Recovery strategies from major supply disruptions in single and multiple sourcing networks," European Journal of Operational Research, Elsevier, vol. 275(2), pages 481-501.
    2. Luohao Tang & Cheng Zhu & Zaili Lin & Jianmai Shi & Weiming Zhang, 2016. "Reliable Facility Location Problem with Facility Protection," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-24, September.
    3. Qingwei Li & Alex Savachkin, 2016. "Reliable distribution networks design with nonlinear fortification function," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(4), pages 805-813, March.
    4. Nayeri, Sina & Sazvar, Zeinab & Heydari, Jafar, 2022. "A global-responsive supply chain considering sustainability and resiliency: Application in the medical devices industry," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    5. Nader Azad & Elkafi Hassini, 2019. "A Benders Decomposition Method for Designing Reliable Supply Chain Networks Accounting for Multimitigation Strategies and Demand Losses," Transportation Science, INFORMS, vol. 53(5), pages 1287-1312, September.
    6. Jabbarzadeh, Armin & Fahimnia, Behnam & Sheu, Jiuh-Biing & Moghadam, Hani Shahmoradi, 2016. "Designing a supply chain resilient to major disruptions and supply/demand interruptions," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 121-149.
    7. Mohammad Ali Nasiri Khalili & Mostafa Kafaei Razavi & Morteza Kafaee Razavi, 2016. "An Optimized Mathematical Model for Items Supplies Planning of a Logistic System," Modern Applied Science, Canadian Center of Science and Education, vol. 10(10), pages 133-133, October.
    8. Salehi Sadghiani, N. & Torabi, S.A. & Sahebjamnia, N., 2015. "Retail supply chain network design under operational and disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 95-114.
    9. Fahimnia, Behnam & Jabbarzadeh, Armin & Sarkis, Joseph, 2018. "Greening versus resilience: A supply chain design perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 129-148.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S.A. Torabi & J. Namdar & S.M. Hatefi & F. Jolai, 2016. "An enhanced possibilistic programming approach for reliable closed-loop supply chain network design," International Journal of Production Research, Taylor & Francis Journals, vol. 54(5), pages 1358-1387, March.
    2. Jabbarzadeh, Armin & Fahimnia, Behnam & Sheu, Jiuh-Biing & Moghadam, Hani Shahmoradi, 2016. "Designing a supply chain resilient to major disruptions and supply/demand interruptions," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 121-149.
    3. Xie, Siyang & An, Kun & Ouyang, Yanfeng, 2019. "Planning facility location under generally correlated facility disruptions: Use of supporting stations and quasi-probabilities," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 115-139.
    4. Weijun Xie & Yanfeng Ouyang & Sze Chun Wong, 2016. "Reliable Location-Routing Design Under Probabilistic Facility Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 1128-1138, August.
    5. An, Yu & Zhang, Yu & Zeng, Bo, 2015. "The reliable hub-and-spoke design problem: Models and algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 103-122.
    6. Zhang, Yanzi & Diabat, Ali & Zhang, Zhi-Hai, 2021. "Reliable closed-loop supply chain design problem under facility-type-dependent probabilistic disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 180-209.
    7. Cheng, Chun & Qi, Mingyao & Zhang, Ying & Rousseau, Louis-Martin, 2018. "A two-stage robust approach for the reliable logistics network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 185-202.
    8. Yun, Lifen & Qin, Yong & Fan, Hongqiang & Ji, Changxu & Li, Xiaopeng & Jia, Limin, 2015. "A reliability model for facility location design under imperfect information," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 596-615.
    9. An, Shi & Cui, Na & Bai, Yun & Xie, Weijun & Chen, Mingliu & Ouyang, Yanfeng, 2015. "Reliable emergency service facility location under facility disruption, en-route congestion and in-facility queuing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 199-216.
    10. Fahimnia, Behnam & Jabbarzadeh, Armin, 2016. "Marrying supply chain sustainability and resilience: A match made in heaven," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 306-324.
    11. F. Parvaresh & S. Hashemi Golpayegany & S. Moattar Husseini & B. Karimi, 2013. "Solving the p-hub Median Problem Under Intentional Disruptions Using Simulated Annealing," Networks and Spatial Economics, Springer, vol. 13(4), pages 445-470, December.
    12. Nader Azad & Elkafi Hassini, 2019. "A Benders Decomposition Method for Designing Reliable Supply Chain Networks Accounting for Multimitigation Strategies and Demand Losses," Transportation Science, INFORMS, vol. 53(5), pages 1287-1312, September.
    13. Nader Azad & Georgios Saharidis & Hamid Davoudpour & Hooman Malekly & Seyed Yektamaram, 2013. "Strategies for protecting supply chain networks against facility and transportation disruptions: an improved Benders decomposition approach," Annals of Operations Research, Springer, vol. 210(1), pages 125-163, November.
    14. Zarrinpoor, Naeme & Fallahnezhad, Mohammad Saber & Pishvaee, Mir Saman, 2018. "The design of a reliable and robust hierarchical health service network using an accelerated Benders decomposition algorithm," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1013-1032.
    15. Xie, Siyang & Ouyang, Yanfeng, 2019. "Reliable service systems design under the risk of network access failures," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 1-13.
    16. Fahimnia, Behnam & Jabbarzadeh, Armin & Sarkis, Joseph, 2018. "Greening versus resilience: A supply chain design perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 129-148.
    17. Ghaffarinasab, Nader & Motallebzadeh, Alireza, 2018. "Hub interdiction problem variants: Models and metaheuristic solution algorithms," European Journal of Operational Research, Elsevier, vol. 267(2), pages 496-512.
    18. Parajuli, Anubhuti & Kuzgunkaya, Onur & Vidyarthi, Navneet, 2017. "Responsive contingency planning of capacitated supply networks under disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 102(C), pages 13-37.
    19. An, Yu & Zeng, Bo & Zhang, Yu & Zhao, Long, 2014. "Reliable p-median facility location problem: two-stage robust models and algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 64(C), pages 54-72.
    20. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:50:y:2013:i:c:p:138-148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.