IDEAS home Printed from https://ideas.repec.org/a/gam/jijfss/v7y2019i2p26-d234740.html
   My bibliography  Save this article

Stock Market Analysis: A Review and Taxonomy of Prediction Techniques

Author

Listed:
  • Dev Shah

    (School of Computing, Queen’s University, Kingston, ON K7L 2N8, Canada)

  • Haruna Isah

    (School of Computing, Queen’s University, Kingston, ON K7L 2N8, Canada)

  • Farhana Zulkernine

    (School of Computing, Queen’s University, Kingston, ON K7L 2N8, Canada)

Abstract

Stock market prediction has always caught the attention of many analysts and researchers. Popular theories suggest that stock markets are essentially a random walk and it is a fool’s game to try and predict them. Predicting stock prices is a challenging problem in itself because of the number of variables which are involved. In the short term, the market behaves like a voting machine but in the longer term, it acts like a weighing machine and hence there is scope for predicting the market movements for a longer timeframe. Application of machine learning techniques and other algorithms for stock price analysis and forecasting is an area that shows great promise. In this paper, we first provide a concise review of stock markets and taxonomy of stock market prediction methods. We then focus on some of the research achievements in stock analysis and prediction. We discuss technical, fundamental, short- and long-term approaches used for stock analysis. Finally, we present some challenges and research opportunities in this field.

Suggested Citation

  • Dev Shah & Haruna Isah & Farhana Zulkernine, 2019. "Stock Market Analysis: A Review and Taxonomy of Prediction Techniques," IJFS, MDPI, vol. 7(2), pages 1-22, May.
  • Handle: RePEc:gam:jijfss:v:7:y:2019:i:2:p:26-:d:234740
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7072/7/2/26/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7072/7/2/26/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cheol‐Ho Park & Scott H. Irwin, 2007. "What Do We Know About The Profitability Of Technical Analysis?," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 786-826, September.
    2. Wei Bao & Jun Yue & Yulei Rao, 2017. "A deep learning framework for financial time series using stacked autoencoders and long-short term memory," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-24, July.
    3. Rajagopal, 2015. "Market Trend Analysis," Palgrave Macmillan Books, in: The Butterfly Effect in Competitive Markets, chapter 4, pages 95-118, Palgrave Macmillan.
    4. Shiller, Robert J, 1981. "Do Stock Prices Move Too Much to be Justified by Subsequent Changes in Dividends?," American Economic Review, American Economic Association, vol. 71(3), pages 421-436, June.
    5. Myron J. Gordon & Eli Shapiro, 1956. "Capital Equipment Analysis: The Required Rate of Profit," Management Science, INFORMS, vol. 3(1), pages 102-110, October.
    6. Shahed Imam & Richard Barker & Colin Clubb, 2008. "The Use of Valuation Models by UK Investment Analysts," European Accounting Review, Taylor & Francis Journals, vol. 17(3), pages 503-535.
    7. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    8. Wang, Ju-Jie & Wang, Jian-Zhou & Zhang, Zhe-George & Guo, Shu-Po, 2012. "Stock index forecasting based on a hybrid model," Omega, Elsevier, vol. 40(6), pages 758-766.
    9. Sang Hyuk Kim & Hee Soo Lee & Han Jun Ko & Seung Hwan Jeong & Hyun Woo Byun & Kyong Joo Oh, 2018. "Pattern Matching Trading System Based on the Dynamic Time Warping Algorithm," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    10. Billah, Baki & King, Maxwell L. & Snyder, Ralph D. & Koehler, Anne B., 2006. "Exponential smoothing model selection for forecasting," International Journal of Forecasting, Elsevier, vol. 22(2), pages 239-247.
    11. Nikola MILOSEVIC, 2016. "Equity Forecast: Predicting Long Term Stock Price Movement using Machine Learning," Journal of Economics Library, KSP Journals, vol. 3(2), pages 288-294, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hakan Er & Adnan Hushmat, 2017. "The application of technical trading rules developed from spot market prices on futures market prices using CAPM," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 7(3), pages 313-353, December.
    2. Ramiah, Vikash & Xu, Xiaoming & Moosa, Imad A., 2015. "Neoclassical finance, behavioral finance and noise traders: A review and assessment of the literature," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 89-100.
    3. Christian Walter, 2004. "Volatilité boursière excessive : irrationalité des comportements ou clivage des esprits ?," Revue d'Économie Financière, Programme National Persée, vol. 74(1), pages 85-104.
    4. Dushmanta Kumar Padhi & Neelamadhab Padhy & Akash Kumar Bhoi & Jana Shafi & Muhammad Fazal Ijaz, 2021. "A Fusion Framework for Forecasting Financial Market Direction Using Enhanced Ensemble Models and Technical Indicators," Mathematics, MDPI, vol. 9(21), pages 1-31, October.
    5. U, JuHyok & Lu, PengYu & Kim, ChungSong & Ryu, UnSok & Pak, KyongSok, 2020. "A new LSTM based reversal point prediction method using upward/downward reversal point feature sets," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    6. Magdalena Mikolajek-Gocejna & Tomasz Urbas, 2023. "Rational Investors or Rational Expectations in Efficient Market Hypothesis?," International Journal of Finance, Insurance and Risk Management, International Journal of Finance, Insurance and Risk Management, vol. 13(2), pages 167-188.
    7. Christiane Goodfellow & Dirk Schiereck & Steffen Wippler, 2013. "Are behavioural finance equity funds a superior investment? A note on fund performance and market efficiency," Journal of Asset Management, Palgrave Macmillan, vol. 14(2), pages 111-119, April.
    8. Thomas Delcey, 2019. "Samuelson vs Fama on the Efficient Market Hypothesis: The Point of View of Expertise [Samuelson vs Fama sur l’efficience informationnelle des marchés financiers : le point de vue de l’expertise]," Post-Print hal-01618347, HAL.
    9. Ariane Szafarz, 2015. "Market Efficiency and Crises:Don’t Throw the Baby out with the Bathwater," Bankers, Markets & Investors, ESKA Publishing, issue 139, pages 20-26, November-.
    10. Vicente Esteve & Manuel Navarro-Ibáñez & María A. Prats, 2013. "The present value model of US stock prices revisited: long-run evidence with structural breaks, 1871-2010," Working Papers 04/13, Instituto Universitario de Análisis Económico y Social.
    11. Eero Pätäri & Timo Leivo, 2017. "A Closer Look At Value Premium: Literature Review And Synthesis," Journal of Economic Surveys, Wiley Blackwell, vol. 31(1), pages 79-168, February.
    12. John H. Cochrane, 1999. "New facts in finance," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 23(Q III), pages 36-58.
    13. David Peón & Anxo Calvo, 2012. "Using Behavioral Economics to Analyze Credit Policies in the Banking Industry," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 145-160.
    14. Karel Janda, 2019. "Earnings Stability and Peer Company Selection for Multiple Based Indirect Valuation," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 69(1), pages 37-75, February.
    15. Alexander S. Sangare, 2005. "Efficience des marchés : un siècle après Bachelier," Revue d'Économie Financière, Programme National Persée, vol. 81(4), pages 107-132.
    16. James Ming Chen, 2017. "Systematic Risk in the Macrocosm," Quantitative Perspectives on Behavioral Economics and Finance, in: Econophysics and Capital Asset Pricing, chapter 0, pages 239-274, Palgrave Macmillan.
    17. JULES H. van BINSBERGEN & CHRISTIAN C. OPP, 2019. "Real Anomalies," Journal of Finance, American Finance Association, vol. 74(4), pages 1659-1706, August.
    18. Mu-En Wu & Wei-Ho Chung, 2019. "Empirical Evaluations on Momentum Effects of Taiwan Index Futures via Stop-Loss and Stop-Profit Mechanisms," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 629-648, March.
    19. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, December.
    20. Dragota, Victor & Mitrica, Eugen, 2004. "Emergent capital markets' efficiency: The case of Romania," European Journal of Operational Research, Elsevier, vol. 155(2), pages 353-360, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijfss:v:7:y:2019:i:2:p:26-:d:234740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.