IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i11p1941-d832435.html
   My bibliography  Save this article

Design and Operation of Multipurpose Production Facilities Using Solar Energy Sources for Heat Integration Sustainable Strategies

Author

Listed:
  • Pedro Simão

    (CEG-IST, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal)

  • Miguel Vieira

    (CEG-IST, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
    Univ Coimbra, CEMMPRE, 3030-788 Coimbra, Portugal
    EIGeS, Universidade Lusófona, 1749-024 Lisboa, Portugal)

  • Telmo Pinto

    (Univ Coimbra, CEMMPRE, 3030-788 Coimbra, Portugal
    Centro ALGORITMI, Universidade do Minho, 4800-058 Guimarães, Portugal)

  • Tânia Pinto-Varela

    (CEG-IST, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal)

Abstract

Industrial production facilities have been facing the requirement to optimise resource efficiency, while considering sustainable goals. This paper addresses the introduction of renewable energies in production by exploring the combined design and scheduling of a multipurpose batch facility, with innovative consideration of direct/indirect heat integration using a solar energy source for thermal energy storage. A mixed-integer linear programming model is formulated to support decisions on scheduling and design selection of storage and processing units, heat exchange components, collector systems, and energy storage units. The results show the minimisation of utilities consumption, with an increase in the operational profit using combined heat integration strategies for the production schedule. A set of illustrative case-study examples highlight the advantages of the solar-based heat storage integration, assessing optimal decision support in the strategic and operational management of these facilities.

Suggested Citation

  • Pedro Simão & Miguel Vieira & Telmo Pinto & Tânia Pinto-Varela, 2022. "Design and Operation of Multipurpose Production Facilities Using Solar Energy Sources for Heat Integration Sustainable Strategies," Mathematics, MDPI, vol. 10(11), pages 1-24, June.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:11:p:1941-:d:832435
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/11/1941/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/11/1941/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wallerand, Anna S. & Kermani, Maziar & Voillat, Régis & Kantor, Ivan & Maréchal, François, 2018. "Optimal design of solar-assisted industrial processes considering heat pumping: Case study of a dairy," Renewable Energy, Elsevier, vol. 128(PB), pages 565-585.
    2. Atkins, Martin J. & Walmsley, Michael R.W. & Morrison, Andrew S., 2010. "Integration of solar thermal for improved energy efficiency in low-temperature-pinch industrial processes," Energy, Elsevier, vol. 35(5), pages 1867-1873.
    3. Schoeneberger, Carrie A. & McMillan, Colin A. & Kurup, Parthiv & Akar, Sertac & Margolis, Robert & Masanet, Eric, 2020. "Solar for industrial process heat: A review of technologies, analysis approaches, and potential applications in the United States," Energy, Elsevier, vol. 206(C).
    4. Tânia Pinto & Augusto Novais & Ana Barbosa-Póvoa, 2003. "Optimal Design of Heat-Integrated Multipurpose Batch Facilities with Economic Savings in Utilities: A Mixed Integer Mathematical Formulation," Annals of Operations Research, Springer, vol. 120(1), pages 201-230, April.
    5. Nemet, Andreja & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Kravanja, Zdravko, 2012. "Methodology for maximising the use of renewables with variable availability," Energy, Elsevier, vol. 44(1), pages 29-37.
    6. Miguel Vieira & Helena Paulo & Tânia Pinto-Varela & Ana Paula Barbosa-Póvoa, 2021. "Assessment of financial risk in the design and scheduling of multipurpose plants under demand uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 59(20), pages 6125-6145, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gil, Juan D. & Topa, A. & Álvarez, J.D. & Torres, J.L. & Pérez, M., 2022. "A review from design to control of solar systems for supplying heat in industrial process applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    2. Nahin Tasmin & Shahjadi Hisan Farjana & Md Rashed Hossain & Santu Golder & M. A. Parvez Mahmud, 2022. "Integration of Solar Process Heat in Industries: A Review," Clean Technol., MDPI, vol. 4(1), pages 1-35, February.
    3. Calvin Kong Leng Sing & Jeng Shiun Lim & Timothy Gordon Walmsley & Peng Yen Liew & Masafumi Goto & Sheikh Ahmad Zaki Bin Shaikh Salim, 2020. "Time-Dependent Integration of Solar Thermal Technology in Industrial Processes," Sustainability, MDPI, vol. 12(6), pages 1-32, March.
    4. Walmsley, Timothy G. & Walmsley, Michael R.W. & Atkins, Martin J. & Neale, James R., 2014. "Integration of industrial solar and gaseous waste heat into heat recovery loops using constant and variable temperature storage," Energy, Elsevier, vol. 75(C), pages 53-67.
    5. Wang, Kai & Pantaleo, Antonio M. & Herrando, María & Faccia, Michele & Pesmazoglou, Ioannis & Franchetti, Benjamin M. & Markides, Christos N., 2020. "Spectral-splitting hybrid PV-thermal (PVT) systems for combined heat and power provision to dairy farms," Renewable Energy, Elsevier, vol. 159(C), pages 1047-1065.
    6. Allouhi, A. & Agrouaz, Y. & Benzakour Amine, Mohammed & Rehman, S. & Buker, M.S. & Kousksou, T. & Jamil, A. & Benbassou, A., 2017. "Design optimization of a multi-temperature solar thermal heating system for an industrial process," Applied Energy, Elsevier, vol. 206(C), pages 382-392.
    7. Martínez-Rodríguez, Guillermo & Fuentes-Silva, Amanda L. & Velázquez-Torres, Daniel & Picón-Núñez, Martín, 2022. "Comprehensive solar thermal integration for industrial processes," Energy, Elsevier, vol. 239(PD).
    8. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    9. Alizadeh Zolbin, Mahboubeh & Tahouni, Nassim & Panjeshahi, M. Hassan, 2022. "Total site integration considering wind /solar energy with supply/demand variation," Energy, Elsevier, vol. 252(C).
    10. Ismail, Muhammad Imran & Yunus, Nor Alafiza & Hashim, Haslenda, 2021. "Integration of solar heating systems for low-temperature heat demand in food processing industry – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    11. Baniassadi, Amir & Momen, Mahyar & Amidpour, Majid, 2015. "A new method for optimization of Solar Heat Integration and solar fraction targeting in low temperature process industries," Energy, Elsevier, vol. 90(P2), pages 1674-1681.
    12. Walmsley, Timothy G. & Walmsley, Michael R.W. & Tarighaleslami, Amir H. & Atkins, Martin J. & Neale, James R., 2015. "Integration options for solar thermal with low temperature industrial heat recovery loops," Energy, Elsevier, vol. 90(P1), pages 113-121.
    13. Varbanov, Petar Sabev & Fodor, Zsófia & Klemeš, Jiří Jaromír, 2012. "Total Site targeting with process specific minimum temperature difference (ΔTmin)," Energy, Elsevier, vol. 44(1), pages 20-28.
    14. Gambade, Julien & Noël, Hervé & Glouannec, Patrick & Magueresse, Anthony, 2023. "Numerical model of intermittent solar hot water production," Renewable Energy, Elsevier, vol. 218(C).
    15. Hadi Tannous & Valentina Stojceska & Savas A. Tassou, 2023. "The Use of Solar Thermal Heating in SPIRE and Non-SPIRE Industrial Processes," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    16. Lidia Lombardi & Barbara Mendecka & Simone Fabrizi, 2020. "Solar Integrated Anaerobic Digester: Energy Savings and Economics," Energies, MDPI, vol. 13(17), pages 1-16, August.
    17. Wallerand, Anna S. & Kermani, Maziar & Voillat, Régis & Kantor, Ivan & Maréchal, François, 2018. "Optimal design of solar-assisted industrial processes considering heat pumping: Case study of a dairy," Renewable Energy, Elsevier, vol. 128(PB), pages 565-585.
    18. Rao Fu & Kun Peng & Peng Wang & Honglin Zhong & Bin Chen & Pengfei Zhang & Yiyi Zhang & Dongyang Chen & Xi Liu & Kuishuang Feng & Jiashuo Li, 2023. "Tracing metal footprints via global renewable power value chains," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    19. Wadim Strielkowski & Lubomír Civín & Elena Tarkhanova & Manuela Tvaronavičienė & Yelena Petrenko, 2021. "Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review," Energies, MDPI, vol. 14(24), pages 1-24, December.
    20. Stanek, Bartosz & Węcel, Daniel & Bartela, Łukasz & Rulik, Sebastian, 2022. "Solar tracker error impact on linear absorbers efficiency in parabolic trough collector – Optical and thermodynamic study," Renewable Energy, Elsevier, vol. 196(C), pages 598-609.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:11:p:1941-:d:832435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.