IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i11p1855-d826590.html
   My bibliography  Save this article

An Output Feedback Controller for a Second-Order System Subject to Asymmetric Output Constraint Based on Lyapunov Function with Unlimited Domain

Author

Listed:
  • Alejandro Rincón

    (Grupo de Investigación en Desarrollos Tecnológicos y Ambientales—GIDTA, Facultad de Ingeniería y Arquitectura, Universidad Católica de Manizales, Carrera 23 No. 60-63, Manizales 170002, Colombia
    Grupo de Investigación en Microbiología y Biotecnología Agroindustrial—GIMIBAG, Instituto de Investigación en Microbiología y Biotecnología Agroindustrial, Universidad Católica de Manizales, Carrera 23 No. 60-63, Manizales 170002, Colombia)

  • Fredy E. Hoyos

    (Departamento de Energía Eléctrica y Automática, Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín, Carrera 80 No. 65-223, Robledo, Medellín 050041, Colombia)

  • John E. Candelo-Becerra

    (Departamento de Energía Eléctrica y Automática, Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín, Carrera 80 No. 65-223, Robledo, Medellín 050041, Colombia)

Abstract

In this work, a new robust controller is designed for a second-order plant model, considering asymmetric output constraints. The tracking error convergence and output constraint are achieved by using a control law whose output feedback term is user-defined and bounded: it takes on large but finite and user-defined values for tracking error values equal to or higher than the constraint boundary, and it comprises a previously known user-defined function for tracking error values far from the constraint boundary. This is a significant contribution that remedies two important limitations of common output constraint control designs: the infinite control effort for tracking error equal to or higher than the constraint boundary, and the impossibility of using previously known user-defined functions in the output feedback function for tracking error values far from the constraint boundary. As another contribution, the control design is based on the dead-zone Lyapunov function, which facilitates the achievement of convergence to a compact set with user-defined size, avoidance of discontinuous signals in the controller, and robustness to model uncertainty or disturbances. The proposed output feedback term consists of the product between two functions of the tracking error, an increasing function and a sigmoid function, whose exact expressions are user-defined. Finally, the effectiveness of the developed controller is illustrated by the simulation of substrate concentration tracking in a continuous flow stirred bioreactor.

Suggested Citation

  • Alejandro Rincón & Fredy E. Hoyos & John E. Candelo-Becerra, 2022. "An Output Feedback Controller for a Second-Order System Subject to Asymmetric Output Constraint Based on Lyapunov Function with Unlimited Domain," Mathematics, MDPI, vol. 10(11), pages 1-20, May.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:11:p:1855-:d:826590
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/11/1855/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/11/1855/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mei, Keqi & Ding, Shihong, 2022. "Output-feedback finite-time stabilization of a class of constrained planar systems," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    2. Wang, Shuzhan & Zhang, Ziye & Lin, Chong & Chen, Jian, 2021. "Fixed-time synchronization for complex-valued BAM neural networks with time-varying delays via pinning control and adaptive pinning control," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    3. Ding, Chen & Ma, Li & Ding, Shihong, 2021. "Second-order sliding mode controller design with mismatched term and time-varying output constraint," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    4. Liu, Lu & Ding, Shihong, 2021. "A unified control approach to finite-time stabilization of SOSM dynamics subject to an output constraint," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mei, Keqi & Ding, Shihong, 2022. "Output-feedback finite-time stabilization of a class of constrained planar systems," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    2. Wei, Yangchun & Wang, Haoping & Tian, Yang, 2024. "Shifting asymmetric time-varying BLF-based model-free hybrid force/position control for 3-DOF SEA-based manipulator with random initial error," Applied Mathematics and Computation, Elsevier, vol. 463(C).
    3. Wang, Sixin & Mei, Jun & Xia, Dan & Yang, Zhanying & Hu, Junhao, 2022. "Finite-time optimal feedback control mechanism for knowledge transmission in complex networks via model predictive control," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    4. Mairemunisa Abudusaimaiti & Abuduwali Abudukeremu & Amina Sabir, 2023. "Fixed/Preassigned-Time Stochastic Synchronization of Complex-Valued Fuzzy Neural Networks with Time Delay," Mathematics, MDPI, vol. 11(17), pages 1-18, September.
    5. Wenjun Dong & Yujiao Huang & Tingan Chen & Xinggang Fan & Haixia Long, 2022. "Local Lagrange Exponential Stability Analysis of Quaternion-Valued Neural Networks with Time Delays," Mathematics, MDPI, vol. 10(13), pages 1-21, June.
    6. Liu, Hui & Li, Xiaohua, 2023. "A prescribed-performance-based adaptive finite-time tracking control scheme circumventing the dependence on the system initial condition," Applied Mathematics and Computation, Elsevier, vol. 448(C).
    7. Yaning Yu & Ziye Zhang, 2022. "State Estimation for Complex-Valued Inertial Neural Networks with Multiple Time Delays," Mathematics, MDPI, vol. 10(10), pages 1-14, May.
    8. Pishro, Aboozar & Shahrokhi, Mohammad & Sadeghi, Hamed, 2022. "Fault-tolerant adaptive fractional controller design for incommensurate fractional-order nonlinear dynamic systems subject to input and output restrictions," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    9. Yu Yao & Guodong Zhang & Yan Li, 2023. "Fixed/Preassigned-Time Stabilization for Complex-Valued Inertial Neural Networks with Distributed Delays: A Non-Separation Approach," Mathematics, MDPI, vol. 11(10), pages 1-17, May.
    10. Bekiros, Stelios & Yao, Qijia & Mou, Jun & Alkhateeb, Abdulhameed F. & Jahanshahi, Hadi, 2023. "Adaptive fixed-time robust control for function projective synchronization of hyperchaotic economic systems with external perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    11. Guimin Gong & Wenhong Lv & Qi Wang, 2023. "Research on Urban Road Traffic Network Pinning Control Based on Feedback Control," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    12. Zhou, Lili & Zhang, Yuhao & Tan, Fei & Huang, Mingzhe, 2023. "Adaptive secure synchronization of complex networks under mixed attacks via time-controllable technology," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    13. Chengqiang Wang & Xiangqing Zhao & Can Wang & Zhiwei Lv, 2023. "Synchronization of Takagi–Sugeno Fuzzy Time-Delayed Stochastic Bidirectional Associative Memory Neural Networks Driven by Brownian Motion in Pre-Assigned Settling Time," Mathematics, MDPI, vol. 11(17), pages 1-32, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:11:p:1855-:d:826590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.