IDEAS home Printed from https://ideas.repec.org/a/gam/jlogis/v8y2024i4p117-d1518616.html
   My bibliography  Save this article

Formalizing Sustainable Urban Mobility Management: An Innovative Approach with Digital Twin and Integrated Modeling

Author

Listed:
  • Andrea Grotto

    (Department of Statistics and Operations Research, Universitat Politècnica de Catalunya (UPC), Campus Nord, C/Jordi Girona 1-3, 08034 Barcelona, Spain
    Institute of Renewable Energies, Eurac Research, Viale Druso 1, 39100 Bolzano, Italy)

  • Pau Fonseca i Casas

    (Department of Statistics and Operations Research, Universitat Politècnica de Catalunya (UPC), Campus Nord, C/Jordi Girona 1-3, 08034 Barcelona, Spain)

  • Alyona Zubaryeva

    (Institute of Renewable Energies, Eurac Research, Viale Druso 1, 39100 Bolzano, Italy)

  • Wolfram Sparber

    (Institute of Renewable Energies, Eurac Research, Viale Druso 1, 39100 Bolzano, Italy)

Abstract

Background : Urban mobility management faces growing challenges that require the analysis and optimization of sustainable solutions. Digital twins (DTs) have emerged as innovative tools for this assessment, but their implementation requires standardized procedures and languages; Methods : As part of a broader methodology for continuous DT validation, this study focuses on the conceptual validation phase, presenting a conceptualization approach through formalization using Specification and Description Language (SDL), agnostic to simulation tools. The conceptual validation was achieved through stakeholder engagement in the Bolzano context, producing 41 SDL diagrams that define both elements common to different urban realities and specific local data collection procedures; Results : The feasibility of implementing this stakeholder-validated conceptualization was demonstrated using Simulation of Urban MObility (SUMO) for traffic simulation and optimization criteria calculation, and its framework SUMO Activity GenerAtion (SAGA) for generating an Activity-Based Modeling (ABM) mobility demand that can be improved through real sensor data; Conclusions : The SDL approach, through its graphical representation (SDL/GR), enables conceptual validation by enhancing stakeholder communication while defining a framework that, while adapting to the monitoring specificities of different urban realities, maintains a common and rigorous structure, independent of the chosen implementation tools and programming languages.

Suggested Citation

  • Andrea Grotto & Pau Fonseca i Casas & Alyona Zubaryeva & Wolfram Sparber, 2024. "Formalizing Sustainable Urban Mobility Management: An Innovative Approach with Digital Twin and Integrated Modeling," Logistics, MDPI, vol. 8(4), pages 1-25, November.
  • Handle: RePEc:gam:jlogis:v:8:y:2024:i:4:p:117-:d:1518616
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2305-6290/8/4/117/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2305-6290/8/4/117/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Yi & Szeto, W.Y. & Han, Ke & Friesz, Terry L., 2018. "Dynamic traffic assignment: A review of the methodological advances for environmentally sustainable road transportation applications," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 370-394.
    2. Albert Solé-Ribalta & Sergio Gómez & Alex Arenas, 2018. "Decongestion of Urban Areas with Hotspot Pricing," Networks and Spatial Economics, Springer, vol. 18(1), pages 33-50, March.
    3. Pau Fonseca i Casas, 2023. "A Continuous Process for Validation, Verification, and Accreditation of Simulation Models," Mathematics, MDPI, vol. 11(4), pages 1-25, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fatemeh Nourmohammadi & Mohammadhadi Mansourianfar & Sajjad Shafiei & Ziyuan Gu & Meead Saberi, 2021. "An Open GMNS Dataset of a Dynamic Multi-Modal Transportation Network Model of Melbourne, Australia," Data, MDPI, vol. 6(2), pages 1-9, February.
    2. Xijie Li & Ying Lv & Wei Sun & Li Zhou, 2019. "Cordon- or Link-Based Pricing: Environment-Oriented Toll Design Models Development and Application," Sustainability, MDPI, vol. 11(1), pages 1-16, January.
    3. Bassolas, Aleix & Ramasco, José J. & Herranz, Ricardo & Cantú-Ros, Oliva G., 2019. "Mobile phone records to feed activity-based travel demand models: MATSim for studying a cordon toll policy in Barcelona," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 56-74.
    4. Azucena Román-de la Sancha & Rodolfo Silva, 2020. "Multivariable Analysis of Transport Network Seismic Performance: Mexico City," Sustainability, MDPI, vol. 12(22), pages 1-40, November.
    5. Fernando Del Ama Gonzalo & Belén Moreno Santamaría & Javier Escoto López & Juan Antonio Hernández Ramos, 2023. "Structural Behavior of Water Flow Glazing: Stress and Elastic Deformation Considering Hydrostatic Pressure," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
    6. Jiang, Yanqun & Ding, Zhongjun & Zhou, Jun & Wu, Peng & Chen, Bokui, 2022. "Estimation of traffic emissions in a polycentric urban city based on a macroscopic approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    7. Vosough, Shaghayegh & de Palma, André & Lindsey, Robin, 2022. "Pricing vehicle emissions and congestion externalities using a dynamic traffic network simulator," Transportation Research Part A: Policy and Practice, Elsevier, vol. 161(C), pages 1-24.
    8. Fabien Leurent, 2022. "On the ratios of urban mobility, Part 1: the HoTer model of travel demand and network flows," Working Papers hal-03805030, HAL.
    9. Panagiotopoulos, George & Kaliampakos, Dimitris, 2021. "Location quotient-based travel costs for determining accessibility changes," Journal of Transport Geography, Elsevier, vol. 91(C).
    10. Du, Jinxiao & Ma, Wei, 2024. "Maximin headway control of automated vehicles for system optimal dynamic traffic assignment in general networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    11. Duong Viet Thong & Aviv Gibali & Mathias Staudigl & Phan Tu Vuong, 2021. "Computing Dynamic User Equilibrium on Large-Scale Networks Without Knowing Global Parameters," Networks and Spatial Economics, Springer, vol. 21(3), pages 735-768, September.
    12. Basma, Hussein & Haddad, Marc & Mansour, Charbel & Nemer, Maroun & Stabat, Pascal, 2022. "Evaluation of the techno-economic performance of battery electric buses: Case study of a bus line in paris," Research in Transportation Economics, Elsevier, vol. 95(C).
    13. Rodrigo Rodrigues de Freitas & Joyce Azevedo Caetano & Cintia Machado de Oliveira & Felipe do Carmo Amorim & Marcio Antelio Neves da Silva, 2022. "Transport Sustainability Index: An Application Multicriteria Analysis," Energies, MDPI, vol. 15(20), pages 1-14, October.
    14. Massimo Armenise & Federico Benassi & Maria Carella & Roberta Misuraca, 2024. "Accessibility and Older and Foreign Populations: Exploring Local Spatial Heterogeneities across Italy," Economies, MDPI, vol. 12(9), pages 1-20, September.
    15. Marta Rojo, 2020. "Evaluation of Traffic Assignment Models through Simulation," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    16. Michele D. Simoni & Edoardo Marcucci & Valerio Gatta & Christian G. Claudel, 2020. "Potential last-mile impacts of crowdshipping services: a simulation-based evaluation," Transportation, Springer, vol. 47(4), pages 1933-1954, August.
    17. Tan, Yu & Sun, Zhanbo & Zhu, Baichuan & Qin, Ziye & Zhao, Yu & Wang, Xuting, 2024. "Minimize population exposure to vehicle-generated emissions by road pricing," Transport Policy, Elsevier, vol. 148(C), pages 15-30.
    18. Fabien Leurent, 2022. "On the ratios of urban mobility, Part 1: the HoTer model of travel demand and network flows," CIRED Working Papers hal-03805030, HAL.
    19. André de Palma & Shaghayegh Vosough & Robin Lindsey, 2020. "Pricing vehicle emissions and congestion using a dynamic traffic network simulator," THEMA Working Papers 2020-09, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    20. Tidswell, J. & Downward, A. & Thielen, C. & Raith, A., 2021. "Minimising emissions in traffic assignment with non-monotonic arc costs," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 70-90.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlogis:v:8:y:2024:i:4:p:117-:d:1518616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.