IDEAS home Printed from https://ideas.repec.org/a/gam/jlogis/v7y2023i1p18-d1101568.html
   My bibliography  Save this article

A Sustainable Two-Echelon Logistics Model with Shipment Consolidation

Author

Listed:
  • Noha A. Mostafa

    (Mechanical Engineering Department, The British University in Egypt, El Sherouk City 11837, Egypt
    Industrial Engineering Department, Zagazig University, Zagazig 44519, Egypt)

  • Omar Eldebaiky

    (Mechanical Engineering Department, The British University in Egypt, El Sherouk City 11837, Egypt)

Abstract

Background : Shipment consolidation is a concept in logistics management in which two or more shipments are transported by using the same vehicle with the aim of using less resources. Methods : The objective of this manuscript is to study shipment consolidation and assess its impact on cost environment, to achieve this, a mathematical model was developed to optimize shipment consolidation while reducing the emissions and minimizing the costs. Results : A case study from major dairy products manufacturers in Egypt was used to validate the model and evaluate the outcomes. A comparison was made between two transportation models, with and without consolidation. Results show that shipment consolidation reduced the total costs by 40% in addition to consuming less fuel, and consequently producing less emissions. Conclusions : These findings emphasize the importance of shipment consolidation and how it can be used to achieve more sustainability in logistics management.

Suggested Citation

  • Noha A. Mostafa & Omar Eldebaiky, 2023. "A Sustainable Two-Echelon Logistics Model with Shipment Consolidation," Logistics, MDPI, vol. 7(1), pages 1-14, March.
  • Handle: RePEc:gam:jlogis:v:7:y:2023:i:1:p:18-:d:1101568
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2305-6290/7/1/18/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2305-6290/7/1/18/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Azizi, Vahid & Hu, Guiping, 2020. "Multi-product pickup and delivery supply chain design with location-routing and direct shipment," International Journal of Production Economics, Elsevier, vol. 226(C).
    2. Agustina, Dwi & Lee, C.K.M. & Piplani, Rajesh, 2014. "Vehicle scheduling and routing at a cross docking center for food supply chains," International Journal of Production Economics, Elsevier, vol. 152(C), pages 29-41.
    3. Pourakbar, Morteza & Sleptchenko, Andrei & Dekker, Rommert, 2009. "The floating stock policy in fast moving consumer goods supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(1), pages 39-49, January.
    4. Fontaine, Pirmin & Minner, Stefan & Schiffer, Maximilian, 2023. "Smart and sustainable city logistics: Design, consolidation, and regulation," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1071-1084.
    5. Abirami Raja Santhi & Padmakumar Muthuswamy, 2022. "Pandemic, War, Natural Calamities, and Sustainability: Industry 4.0 Technologies to Overcome Traditional and Contemporary Supply Chain Challenges," Logistics, MDPI, vol. 6(4), pages 1-32, November.
    6. Mohit Malik & Vijay Kumar Gahlawat & Rahul S Mor & Vijay Dahiya & Mukheshwar Yadav, 2022. "Application of Optimization Techniques in the Dairy Supply Chain: A Systematic Review," Logistics, MDPI, vol. 6(4), pages 1-16, October.
    7. Cortes, Juan David & Suzuki, Yoshinori, 2020. "Vehicle Routing with Shipment Consolidation," International Journal of Production Economics, Elsevier, vol. 227(C).
    8. Yildiz, Hakan & Ravi, R. & Fairey, Wayne, 2010. "Integrated optimization of customer and supplier logistics at Robert Bosch LLC," European Journal of Operational Research, Elsevier, vol. 207(1), pages 456-464, November.
    9. Malena Zielske & Tobias Held & Athanasios Kourouklis, 2022. "A Framework on the Use of Agile Methods in Logistics Startups," Logistics, MDPI, vol. 6(1), pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Linlin & Han, Shuihua & Ye, Zhen & Xia, Senmao, 2023. "The optimisation of the location of front distribution centre: A spatio-temporal joint perspective," International Journal of Production Economics, Elsevier, vol. 263(C).
    2. Azizi, Vahid & Hu, Guiping, 2020. "Multi-product pickup and delivery supply chain design with location-routing and direct shipment," International Journal of Production Economics, Elsevier, vol. 226(C).
    3. H. Khorshidian & M. Akbarpour Shirazi & S. M. T. Fatemi Ghomi, 2019. "An intelligent truck scheduling and transportation planning optimization model for product portfolio in a cross-dock," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 163-184, January.
    4. Sara Martins & Pedro Amorim & Bernardo Almada-Lobo, 2018. "Delivery mode planning for distribution to brick-and-mortar retail stores: discussion and literature review," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 785-812, December.
    5. Anna Urmston & Dongping Song & Andrew Lyons, 2024. "The Development of Risk Assessments and Supplier Resilience Models for Military Industrial Supply Chains Considering Rare Disruptions," Logistics, MDPI, vol. 8(2), pages 1-24, June.
    6. Soto-Silva, Wladimir E. & Nadal-Roig, Esteve & González-Araya, Marcela C. & Pla-Aragones, Lluis M., 2016. "Operational research models applied to the fresh fruit supply chain," European Journal of Operational Research, Elsevier, vol. 251(2), pages 345-355.
    7. Shruti Agrawal & Rohit Agrawal & Anil Kumar & Sunil Luthra & Jose Arturo Garza-Reyes, 2024. "Can industry 5.0 technologies overcome supply chain disruptions?—a perspective study on pandemics, war, and climate change issues," Operations Management Research, Springer, vol. 17(2), pages 453-468, June.
    8. Zhengyi Li, 2019. "Optimal Utilization of Ports’ Free-of-Charge Times in One Distribution Center and Multiple Ports Inventory Systems," Complexity, Hindawi, vol. 2019, pages 1-12, February.
    9. İlker Küçükoğlu & Nursel Öztürk, 2019. "A hybrid meta-heuristic algorithm for vehicle routing and packing problem with cross-docking," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2927-2943, December.
    10. Shejun Deng & Yingying Yuan & Yong Wang & Haizhong Wang & Charles Koll, 2020. "Collaborative multicenter logistics delivery network optimization with resource sharing," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-31, November.
    11. Ladier, Anne-Laure & Alpan, Gülgün, 2016. "Cross-docking operations: Current research versus industry practice," Omega, Elsevier, vol. 62(C), pages 145-162.
    12. Mohammed Alnahhal & Batin Latif Aylak & Muataz Al Hazza & Ahmad Sakhrieh, 2024. "Economic Order Quantity: A State-of-the-Art in the Era of Uncertain Supply Chains," Sustainability, MDPI, vol. 16(14), pages 1-19, July.
    13. Rijal, Arpan & Bijvank, Marco & de Koster, René, 2019. "Integrated scheduling and assignment of trucks at unit-load cross-dock terminals with mixed service mode dock doors," European Journal of Operational Research, Elsevier, vol. 278(3), pages 752-771.
    14. Michał Lasota & Aleksandra Zabielska & Marianna Jacyna & Piotr Gołębiowski & Renata Żochowska & Mariusz Wasiak, 2024. "Method for Delivery Planning in Urban Areas with Environmental Aspects," Sustainability, MDPI, vol. 16(4), pages 1-18, February.
    15. Nuno Pereira & José Antunes & Luís Barreto, 2023. "Impact of Management and Reverse Logistics on Recycling in a War Scenario," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    16. Pei-Ju Wu & Yu-Shan Lin, 2023. "Reducing waste and achieving sustainable food security through optimizing surplus-food collection and meal distribution," Annals of Operations Research, Springer, vol. 328(2), pages 1537-1555, September.
    17. Jianli Luo & Chen Ji & Chunxiao Qiu & Fu Jia, 2018. "Agri-Food Supply Chain Management: Bibliometric and Content Analyses," Sustainability, MDPI, vol. 10(5), pages 1-22, May.
    18. Peng Ye & Bin Yu & Wenhong Chen & Kan Liu & Longzhen Ye, 2022. "Rainfall-induced landslide susceptibility mapping using machine learning algorithms and comparison of their performance in Hilly area of Fujian Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 965-995, September.
    19. Radislav Vaisman & Ilya B. Gertsbakh, 2023. "Optimal balanced chain decomposition of partially ordered sets with applications to operating cost minimization in aircraft routing problems," Public Transport, Springer, vol. 15(1), pages 199-225, March.
    20. Mohammad Fathian & Javid Jouzdani & Mehdi Heydari & Ahmad Makui, 2018. "Location and transportation planning in supply chains under uncertainty and congestion by using an improved electromagnetism-like algorithm," Journal of Intelligent Manufacturing, Springer, vol. 29(7), pages 1447-1464, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlogis:v:7:y:2023:i:1:p:18-:d:1101568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.