IDEAS home Printed from https://ideas.repec.org/a/spr/opmare/v17y2024i2d10.1007_s12063-023-00410-y.html
   My bibliography  Save this article

Can industry 5.0 technologies overcome supply chain disruptions?—a perspective study on pandemics, war, and climate change issues

Author

Listed:
  • Shruti Agrawal

    (Malaviya National Institute of Technology Jaipur)

  • Rohit Agrawal

    (Indian Institute of Management)

  • Anil Kumar

    (London Metropolitan University)

  • Sunil Luthra

    (Ch. Ranbir Singh State Institute of Engineering and Technology)

  • Jose Arturo Garza-Reyes

    (University of Derby)

Abstract

Industry 5.0 (I5.0) is the next industrial revolution that will leverage human intervention in collaboration with intelligent, logical, and smart machines to attain even more user-preferred and resource-efficient manufacturing and supply chain solutions. The main aim of this article is to study I5.0 technologies in supply chains when these are affected by disruptive phenomena such as those created by wars, climate change or pandemics. A systematic literature review methodology was conducted to understand the present knowledge connected with this theme. This study summarises 194 research articles from the period 2009 to 2022 to understand the present knowledge connected with this theme. The research findings show a significant gap related to the adoption of I5.0 technologies to prevent or overcome supply chain disruptions. 194 articles, including journal and review articles, were identified in the literature. The study provides a novel and insightful concept related to I5.0 within the context of supply chain disruptions. The potential applications of I5.0 and Industry 4.0 are elaborately discussed in three areas, namely: (1) disruptions in supply chains due to pandemics; (2) disruptions in supply chains due to war; and (3) disruptions in supply chains due to climate change. Finally, this study highlights research implications and proposes future research avenues that will contribute to further exploring the adoption of I5.0 technologies to prevent, manage and overcome disruptions in supply chains.

Suggested Citation

  • Shruti Agrawal & Rohit Agrawal & Anil Kumar & Sunil Luthra & Jose Arturo Garza-Reyes, 2024. "Can industry 5.0 technologies overcome supply chain disruptions?—a perspective study on pandemics, war, and climate change issues," Operations Management Research, Springer, vol. 17(2), pages 453-468, June.
  • Handle: RePEc:spr:opmare:v:17:y:2024:i:2:d:10.1007_s12063-023-00410-y
    DOI: 10.1007/s12063-023-00410-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12063-023-00410-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12063-023-00410-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abirami Raja Santhi & Padmakumar Muthuswamy, 2022. "Pandemic, War, Natural Calamities, and Sustainability: Industry 4.0 Technologies to Overcome Traditional and Contemporary Supply Chain Challenges," Logistics, MDPI, vol. 6(4), pages 1-32, November.
    2. Christian Bunn & Peter Läderach & Oriana Ovalle Rivera & Dieter Kirschke, 2015. "A bitter cup: climate change profile of global production of Arabica and Robusta coffee," Climatic Change, Springer, vol. 129(1), pages 89-101, March.
    3. Kevin W. Boyack & Richard Klavans, 2010. "Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(12), pages 2389-2404, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guan-Can Yang & Gang Li & Chun-Ya Li & Yun-Hua Zhao & Jing Zhang & Tong Liu & Dar-Zen Chen & Mu-Hsuan Huang, 2015. "Using the comprehensive patent citation network (CPC) to evaluate patent value," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1319-1346, December.
    2. Tuba Bircan & Almila Alkim Akdag Salah, 2022. "A Bibliometric Analysis of the Use of Artificial Intelligence Technologies for Social Sciences," Mathematics, MDPI, vol. 10(23), pages 1-17, November.
    3. Nina Sakinah Ahmad Rofaie & Seuk Wai Phoong & Muzalwana Abdul Talib & Ainin Sulaiman, 2023. "Light-emitting diode (LED) research: A bibliometric analysis during 2003–2018," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(1), pages 173-191, February.
    4. Serhat Burmaoglu & Ozcan Saritas, 2019. "An evolutionary analysis of the innovation policy domain: Is there a paradigm shift?," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 823-847, March.
    5. Rey-Long Liu, 2017. "A new bibliographic coupling measure with descriptive capability," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 915-935, February.
    6. Yulei Xie & Ling Ji & Beibei Zhang & Gordon Huang, 2018. "Evolution of the Scientific Literature on Input–Output Analysis: A Bibliometric Analysis of 1990–2017," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    7. Perez-Vega, Rodrigo & Hopkinson, Paul & Singhal, Aishwarya & Mariani, Marcello M., 2022. "From CRM to social CRM: A bibliometric review and research agenda for consumer research," Journal of Business Research, Elsevier, vol. 151(C), pages 1-16.
    8. Chris W. Belter, 2013. "A bibliometric analysis of NOAA’s Office of Ocean Exploration and Research," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(2), pages 629-644, May.
    9. Ding, Ying, 2011. "Community detection: Topological vs. topical," Journal of Informetrics, Elsevier, vol. 5(4), pages 498-514.
    10. Xinhai Liu & Wolfgang Glänzel & Bart De Moor, 2011. "Hybrid clustering of multi-view data via Tucker-2 model and its application," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(3), pages 819-839, September.
    11. Yu-Wei Chang & Mu-Hsuan Huang & Chiao-Wen Lin, 2015. "Evolution of research subjects in library and information science based on keyword, bibliographical coupling, and co-citation analyses," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2071-2087, December.
    12. Paul Donner, 2021. "Validation of the Astro dataset clustering solutions with external data," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1619-1645, February.
    13. Xuefeng Wang & Shuo Zhang & Yuqin liu, 2022. "ITGInsight–discovering and visualizing research fronts in the scientific literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6509-6531, November.
    14. De Andrés Fazio, Salvador & Urquía Grande, Elena & Pérez Estébanez, Raquel, 2022. "The “secret life” of the Statement of Cash Flow: A bibliometric analysis," Cuadernos de Gestión, Universidad del País Vasco - Instituto de Economía Aplicada a la Empresa (IEAE).
    15. Ahmad, Farhan & Bask, Anu & Laari, Sini & Robinson, Craig V., 2023. "Business management perspectives on the circular economy: Present state and future directions," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    16. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    17. Zamani, Mehdi & Yalcin, Haydar & Naeini, Ali Bonyadi & Zeba, Gordana & Daim, Tugrul U, 2022. "Developing metrics for emerging technologies: identification and assessment," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    18. Li, Heyang & Wu, Meijun & Wang, Yougui & Zeng, An, 2022. "Bibliographic coupling networks reveal the advantage of diversification in scientific projects," Journal of Informetrics, Elsevier, vol. 16(3).
    19. Kajikawa, Yuya & Mejia, Cristian & Wu, Mengjia & Zhang, Yi, 2022. "Academic landscape of Technological Forecasting and Social Change through citation network and topic analyses," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    20. Kouadio, Louis & Tixier, Philippe & Byrareddy, Vivekananda & Marcussen, Torben & Mushtaq, Shahbaz & Rapidel, Bruno & Stone, Roger, 2021. "Performance of a process-based model for predicting robusta coffee yield at the regional scale in Vietnam," Ecological Modelling, Elsevier, vol. 443(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opmare:v:17:y:2024:i:2:d:10.1007_s12063-023-00410-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.