IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v207y2010i1p456-464.html
   My bibliography  Save this article

Integrated optimization of customer and supplier logistics at Robert Bosch LLC

Author

Listed:
  • Yildiz, Hakan
  • Ravi, R.
  • Fairey, Wayne

Abstract

Large automotive supply chains typically involve manufacturers pulling materials from their suppliers along the chain, usually by using round-trip truckload routes. The return trips on these routes are used to return empty containers back to the suppliers. The mismatch between the amount of materials and empty containers results in underutilization of the return trips. A supplier can utilize this unused capacity by identifying a subset of promising customer routes that can be combined with its existing supplier routes to save overall costs of the system. Such an integration also leads to other supply chain coordination benefits such as the potential of using crossdocks, more frequent milkruns and ensuing reductions in inventories. We undertake such an integrated study of the inbound logistics from suppliers and the outbound logistics to customers at Robert Bosch LLC, a leading automotive parts manufacturer. We identify the opportunity for significant cost savings by using a mixed-integer programming model that matches opposite flows from and to the customers and suppliers. We consider the problem from a supply chain coordination perspective, where Bosch makes all the transportation arrangements for its customers and suppliers based on the centralized optimum solution, and outline its additional benefits.

Suggested Citation

  • Yildiz, Hakan & Ravi, R. & Fairey, Wayne, 2010. "Integrated optimization of customer and supplier logistics at Robert Bosch LLC," European Journal of Operational Research, Elsevier, vol. 207(1), pages 456-464, November.
  • Handle: RePEc:eee:ejores:v:207:y:2010:i:1:p:456-464
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00296-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cortés, Cristián E. & Matamala, Martín & Contardo, Claudio, 2010. "The pickup and delivery problem with transfers: Formulation and a branch-and-cut solution method," European Journal of Operational Research, Elsevier, vol. 200(3), pages 711-724, February.
    2. Gerardo Berbeglia & Jean-François Cordeau & Irina Gribkovskaia & Gilbert Laporte, 2007. "Rejoinder on: Static pickup and delivery problems: a classification scheme and survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 45-47, July.
    3. Hoff, Arild & Gribkovskaia, Irina & Laporte, Gilbert & Løkketangen, Arne, 2009. "Lasso solution strategies for the vehicle routing problem with pickups and deliveries," European Journal of Operational Research, Elsevier, vol. 192(3), pages 755-766, February.
    4. H.L.M. Kerivin & M. Lacroix & A.R. Mahjoub & A. Quilliot, 2008. "The splittable pickup and delivery problem with reloads," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 2(2), pages 112-133.
    5. Gerardo Berbeglia & Jean-François Cordeau & Irina Gribkovskaia & Gilbert Laporte, 2007. "Static pickup and delivery problems: a classification scheme and survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 1-31, July.
    6. Gajpal, Yuvraj & Abad, P.L., 2009. "Multi-ant colony system (MACS) for a vehicle routing problem with backhauls," European Journal of Operational Research, Elsevier, vol. 196(1), pages 102-117, July.
    7. C.D. Tarantilis & C.T. Kiranoudis, 2002. "BoneRoute: An Adaptive Memory-Based Method for Effective Fleet Management," Annals of Operations Research, Springer, vol. 115(1), pages 227-241, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Noha A. Mostafa & Omar Eldebaiky, 2023. "A Sustainable Two-Echelon Logistics Model with Shipment Consolidation," Logistics, MDPI, vol. 7(1), pages 1-14, March.
    2. Azizi, Vahid & Hu, Guiping, 2020. "Multi-product pickup and delivery supply chain design with location-routing and direct shipment," International Journal of Production Economics, Elsevier, vol. 226(C).
    3. Faccio, M. & Persona, A. & Sgarbossa, F. & Zanin, G., 2014. "Sustainable SC through the complete reprocessing of end-of-life products by manufacturers: A traditional versus social responsibility company perspective," European Journal of Operational Research, Elsevier, vol. 233(2), pages 359-373.
    4. Volker Trauzettel, 2015. "A Case Study On Optimizing Parts Supply In Manufacturing By Reusable Containers," Business Logistics in Modern Management, Josip Juraj Strossmayer University of Osijek, Faculty of Economics, Croatia, vol. 15, pages 161-174.
    5. Gunasekaran, Angappa & Ngai, Eric W.T., 2012. "The future of operations management: An outlook and analysis," International Journal of Production Economics, Elsevier, vol. 135(2), pages 687-701.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masson, Renaud & Ropke, Stefan & Lehuédé, Fabien & Péton, Olivier, 2014. "A branch-and-cut-and-price approach for the pickup and delivery problem with shuttle routes," European Journal of Operational Research, Elsevier, vol. 236(3), pages 849-862.
    2. Ting, Chuan-Kang & Liao, Xin-Lan, 2013. "The selective pickup and delivery problem: Formulation and a memetic algorithm," International Journal of Production Economics, Elsevier, vol. 141(1), pages 199-211.
    3. Wolfinger, David & Salazar-González, Juan-José, 2021. "The Pickup and Delivery Problem with Split Loads and Transshipments: A Branch-and-Cut Solution Approach," European Journal of Operational Research, Elsevier, vol. 289(2), pages 470-484.
    4. Renaud Masson & Fabien Lehuédé & Olivier Péton, 2013. "An Adaptive Large Neighborhood Search for the Pickup and Delivery Problem with Transfers," Transportation Science, INFORMS, vol. 47(3), pages 344-355, August.
    5. Gutiérrez-Jarpa, Gabriel & Desaulniers, Guy & Laporte, Gilbert & Marianov, Vladimir, 2010. "A branch-and-price algorithm for the Vehicle Routing Problem with Deliveries, Selective Pickups and Time Windows," European Journal of Operational Research, Elsevier, vol. 206(2), pages 341-349, October.
    6. Paul Buijs & Jose Alejandro Lopez Alvarez & Marjolein Veenstra & Kees Jan Roodbergen, 2016. "Improved Collaborative Transport Planning at Dutch Logistics Service Provider Fritom," Interfaces, INFORMS, vol. 46(2), pages 119-132, April.
    7. Maria Battarra & Güneş Erdoğan & Gilbert Laporte & Daniele Vigo, 2010. "The Traveling Salesman Problem with Pickups, Deliveries, and Handling Costs," Transportation Science, INFORMS, vol. 44(3), pages 383-399, August.
    8. Gábor Nagy & Niaz A. Wassan & M. Grazia Speranza & Claudia Archetti, 2015. "The Vehicle Routing Problem with Divisible Deliveries and Pickups," Transportation Science, INFORMS, vol. 49(2), pages 271-294, May.
    9. Abdulkader, M.M.S. & Gajpal, Yuvraj & ElMekkawy, Tarek Y., 2018. "Vehicle routing problem in omni-channel retailing distribution systems," International Journal of Production Economics, Elsevier, vol. 196(C), pages 43-55.
    10. Pureza, Vitória & Morabito, Reinaldo & Reimann, Marc, 2012. "Vehicle routing with multiple deliverymen: Modeling and heuristic approaches for the VRPTW," European Journal of Operational Research, Elsevier, vol. 218(3), pages 636-647.
    11. Salazar-González, Juan-José & Santos-Hernández, Beatriz, 2015. "The split-demand one-commodity pickup-and-delivery travelling salesman problem," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 58-73.
    12. Agatz, Niels & Erera, Alan & Savelsbergh, Martin & Wang, Xing, 2012. "Optimization for dynamic ride-sharing: A review," European Journal of Operational Research, Elsevier, vol. 223(2), pages 295-303.
    13. Neves-Moreira, F. & Amorim, P. & Guimarães, L. & Almada-Lobo, B., 2016. "A long-haul freight transportation problem: Synchronizing resources to deliver requests passing through multiple transshipment locations," European Journal of Operational Research, Elsevier, vol. 248(2), pages 487-506.
    14. Juliette Medina & Mike Hewitt & Fabien Lehuédé & Olivier Péton, 2019. "Integrating long-haul and local transportation planning: the Service Network Design and Routing Problem," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 119-145, June.
    15. Yiwei Fan & Gang Wang & Xiaoling Lu & Gaobin Wang, 2019. "Distributed forecasting and ant colony optimization for the bike-sharing rebalancing problem with unserved demands," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-26, December.
    16. Roel G. van Anholt & Leandro C. Coelho & Gilbert Laporte & Iris F. A. Vis, 2016. "An Inventory-Routing Problem with Pickups and Deliveries Arising in the Replenishment of Automated Teller Machines," Transportation Science, INFORMS, vol. 50(3), pages 1077-1091, August.
    17. Rais, A. & Alvelos, F. & Carvalho, M.S., 2014. "New mixed integer-programming model for the pickup-and-delivery problem with transshipment," European Journal of Operational Research, Elsevier, vol. 235(3), pages 530-539.
    18. Qian, Fubin & Gribkovskaia, Irina & Laporte, Gilbert & Halskau sr., Øyvind, 2012. "Passenger and pilot risk minimization in offshore helicopter transportation," Omega, Elsevier, vol. 40(5), pages 584-593.
    19. José Brandão, 2016. "A deterministic iterated local search algorithm for the vehicle routing problem with backhauls," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 445-465, July.
    20. Gansterer, Margaretha & Hartl, Richard F. & Sörensen, Kenneth, 2020. "Pushing frontiers in auction-based transport collaborations," Omega, Elsevier, vol. 94(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:207:y:2010:i:1:p:456-464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.