IDEAS home Printed from https://ideas.repec.org/a/gam/jlogis/v6y2022i3p62-d904445.html
   My bibliography  Save this article

A Particle Swarm Optimization Approach to Solve the Vehicle Routing Problem with Cross-Docking and Carbon Emissions Reduction in Logistics Management

Author

Listed:
  • Shih-Che Lo

    (Department of Industrial Management, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan)

Abstract

Background : The logistics network design with cross-docking operations enables shipping service providers to integrate the physical flow of products between vendors and dealers in logistics management. The collective goal is to synchronize the goods in both pickup and delivery operations concurrently to reduce the handling cost, inventory cost, and operation cost generated. Therefore, the optimal vehicle routing plan is crucial to generate a truck routing schedule with minimal total cost, fulfilling the purchasing requirements and the distribution demand. Global warming and climate change are important topics due to increasing greenhouse gas emissions. Sustainable logistics management with optimized routes for trucks can assist in reducing greenhouse gas emissions and easing the effects of temperature increases on our living environment. Methods : A heuristic approach based on Particle Swarm Optimization, called ePSO, was proposed and implemented in this paper to solve the vehicle routing problems with cross-docking and carbon emissions reduction at the same time. Results : Performance comparisons were made with the Genetic Algorithm (GA) through the experiments of several vehicle routing problems with pickup and delivery benchmark problems to validate the performance of the ePSO procedure. Conclusions : Experimental results showed that the proposed ePSO approach was better than the GA for most cases by statistical hypothesis testing.

Suggested Citation

  • Shih-Che Lo, 2022. "A Particle Swarm Optimization Approach to Solve the Vehicle Routing Problem with Cross-Docking and Carbon Emissions Reduction in Logistics Management," Logistics, MDPI, vol. 6(3), pages 1-15, September.
  • Handle: RePEc:gam:jlogis:v:6:y:2022:i:3:p:62-:d:904445
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2305-6290/6/3/62/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2305-6290/6/3/62/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shih-Che Lo & Yi-Cheng Shih, 2021. "A Genetic Algorithm with Quantum Random Number Generator for Solving the Pollution-Routing Problem in Sustainable Logistics Management," Sustainability, MDPI, vol. 13(15), pages 1-18, July.
    2. Michel Gendreau & Alain Hertz & Gilbert Laporte, 1994. "A Tabu Search Heuristic for the Vehicle Routing Problem," Management Science, INFORMS, vol. 40(10), pages 1276-1290, October.
    3. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    4. Vanajakumari, Manoj & Sun, Haoying & Jones, Ashley & Sriskandarajah, Chelliah, 2022. "Supply chain planning: A case for Hybrid Cross-Docks," Omega, Elsevier, vol. 108(C).
    5. Mohammad Mahdi Nasiri & Ali Rahbari & Frank Werner & Roya Karimi, 2018. "Incorporating supplier selection and order allocation into the vehicle routing and multi-cross-dock scheduling problem," International Journal of Production Research, Taylor & Francis Journals, vol. 56(19), pages 6527-6552, October.
    6. Bektas, Tolga & Laporte, Gilbert, 2011. "The Pollution-Routing Problem," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1232-1250, September.
    7. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2014. "The bi-objective Pollution-Routing Problem," European Journal of Operational Research, Elsevier, vol. 232(3), pages 464-478.
    8. C S Sung & S H Song, 2003. "Integrated service network design for a cross-docking supply chain network," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(12), pages 1283-1295, December.
    9. Alice Vasconcelos Nobre & Caio Cézar Rodrigues Oliveira & Denilson Ricardo de Lucena Nunes & André Cristiano Silva Melo & Gil Eduardo Guimarães & Rosley Anholon & Vitor William Batista Martins, 2022. "Analysis of Decision Parameters for Route Plans and Their Importance for Sustainability: An Exploratory Study Using the TOPSIS Technique," Logistics, MDPI, vol. 6(2), pages 1-12, May.
    10. Gilbert Laporte & Yves Nobert & Martin Desrochers, 1985. "Optimal Routing under Capacity and Distance Restrictions," Operations Research, INFORMS, vol. 33(5), pages 1050-1073, October.
    11. Phan Nguyen Ky Phuc & Nguyen Le Phuong Thao, 2021. "Ant Colony Optimization for Multiple Pickup and Multiple Delivery Vehicle Routing Problem with Time Window and Heterogeneous Fleets," Logistics, MDPI, vol. 5(2), pages 1-13, May.
    12. The Jin Ai & Voratas Kachitvichyanukul, 2009. "A Particle Swarm Optimisation for Vehicle Routing Problem with Time Windows," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 6(4), pages 519-537.
    13. Tarik Chargui & Abdelghani Bekrar & Mohamed Reghioui & Damien Trentesaux, 2022. "Scheduling trucks and storage operations in a multiple-door cross-docking terminal considering multiple storage zones," International Journal of Production Research, Taylor & Francis Journals, vol. 60(4), pages 1153-1177, February.
    14. Tseng, Chao-Tang & Liao, Ching-Jong, 2008. "A discrete particle swarm optimization for lot-streaming flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 191(2), pages 360-373, December.
    15. Zachariadis, Emmanouil E. & Tarantilis, Christos D. & Kiranoudis, Chris T., 2010. "An adaptive memory methodology for the vehicle routing problem with simultaneous pick-ups and deliveries," European Journal of Operational Research, Elsevier, vol. 202(2), pages 401-411, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shih-Che Lo & Ying-Lin Chuang, 2023. "Vehicle Routing Optimization with Cross-Docking Based on an Artificial Immune System in Logistics Management," Mathematics, MDPI, vol. 11(4), pages 1-19, February.
    2. Chakat Chueadee & Preecha Kriengkorakot & Nuchsara Kriengkorakot, 2022. "MDEALNS for Solving the Tapioca Starch Logistics Network Problem for the Land Port of Nakhon Ratchasima Province, Thailand," Logistics, MDPI, vol. 6(4), pages 1-24, October.
    3. Robert Ulewicz & Dominika Siwiec & Andrzej Pacana, 2023. "A New Model of Pro-Quality Decision Making in Terms of Products’ Improvement Considering Customer Requirements," Energies, MDPI, vol. 16(11), pages 1-22, May.
    4. Tzu-An Chiang & Zhen-Hua Che & Chao-Wei Hung, 2023. "A K-Means Clustering and the Prim’s Minimum Spanning Tree-Based Optimal Picking-List Consolidation and Assignment Methodology for Achieving the Sustainable Warehouse Operations," Sustainability, MDPI, vol. 15(4), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goeke, Dominik & Schneider, Michael, 2015. "Routing a mixed fleet of electric and conventional vehicles," European Journal of Operational Research, Elsevier, vol. 245(1), pages 81-99.
    2. Goeke, D. & Schneider, M., 2015. "Routing a Mixed Fleet of Electric and Conventional Vehicles," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 65939, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    3. Shih-Che Lo & Ying-Lin Chuang, 2023. "Vehicle Routing Optimization with Cross-Docking Based on an Artificial Immune System in Logistics Management," Mathematics, MDPI, vol. 11(4), pages 1-19, February.
    4. Maria João Santos & Pedro Amorim & Alexandra Marques & Ana Carvalho & Ana Póvoa, 2020. "The vehicle routing problem with backhauls towards a sustainability perspective: a review," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 358-401, July.
    5. Koyuncu, Işıl & Yavuz, Mesut, 2019. "Duplicating nodes or arcs in green vehicle routing: A computational comparison of two formulations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 605-623.
    6. Gilbert Laporte, 2009. "Fifty Years of Vehicle Routing," Transportation Science, INFORMS, vol. 43(4), pages 408-416, November.
    7. Xiao, Yiyong & Konak, Abdullah, 2016. "The heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 146-166.
    8. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    9. Berbotto, Leonardo & García, Sergio & Nogales, Francisco J., 2011. "A vehicle routing model with split delivery and stop nodes," DES - Working Papers. Statistics and Econometrics. WS ws110906, Universidad Carlos III de Madrid. Departamento de Estadística.
    10. Shih-Che Lo & Yi-Cheng Shih, 2021. "A Genetic Algorithm with Quantum Random Number Generator for Solving the Pollution-Routing Problem in Sustainable Logistics Management," Sustainability, MDPI, vol. 13(15), pages 1-18, July.
    11. Zhang, Jianghua & Zhao, Yingxue & Xue, Weili & Li, Jin, 2015. "Vehicle routing problem with fuel consumption and carbon emission," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 234-242.
    12. Samuel Reong & Hui-Ming Wee & Yu-Lin Hsiao, 2022. "20 Years of Particle Swarm Optimization Strategies for the Vehicle Routing Problem: A Bibliometric Analysis," Mathematics, MDPI, vol. 10(19), pages 1-19, October.
    13. Gilbert Laporte, 2007. "What you should know about the vehicle routing problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(8), pages 811-819, December.
    14. Chiang, Wen-Chyuan & Li, Yuyu & Shang, Jennifer & Urban, Timothy L., 2019. "Impact of drone delivery on sustainability and cost: Realizing the UAV potential through vehicle routing optimization," Applied Energy, Elsevier, vol. 242(C), pages 1164-1175.
    15. Liu, Ran & Jiang, Zhibin, 2012. "The close–open mixed vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 220(2), pages 349-360.
    16. Laporte, Gilbert, 2024. "Fifty years of operational research: 1972–2022," European Journal of Operational Research, Elsevier, vol. 319(2), pages 347-360.
    17. Rau, Hsin & Budiman, Syarif Daniel & Widyadana, Gede Agus, 2018. "Optimization of the multi-objective green cyclical inventory routing problem using discrete multi-swarm PSO method," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 120(C), pages 51-75.
    18. Babagolzadeh, Mahla & Zhang, Yahua & Abbasi, Babak & Shrestha, Anup & Zhang, Anming, 2022. "Promoting Australian regional airports with subsidy schemes: Optimised downstream logistics using vehicle routing problem," Transport Policy, Elsevier, vol. 128(C), pages 38-51.
    19. Ehmke, Jan Fabian & Campbell, Ann M. & Thomas, Barrett W., 2018. "Optimizing for total costs in vehicle routing in urban areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 242-265.
    20. Yagcitekin, Bunyamin & Uzunoglu, Mehmet, 2016. "A double-layer smart charging strategy of electric vehicles taking routing and charge scheduling into account," Applied Energy, Elsevier, vol. 167(C), pages 407-419.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlogis:v:6:y:2022:i:3:p:62-:d:904445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.