IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v54y2003i12d10.1057_palgrave.jors.2601645.html
   My bibliography  Save this article

Integrated service network design for a cross-docking supply chain network

Author

Listed:
  • C S Sung

    (Korea Advanced Institute of Science and Technology)

  • S H Song

    (Korea Advanced Institute of Science and Technology)

Abstract

This paper considers an integrated service network design problem for a given set of freight demands that is concerned with integration of locating cross-docking (CD) centers and allocating vehicles for the associated direct (transportation) services from origin node to a CD center or from a CD center to the destination node. For the vehicle allocation, direct services (sub-routes) should be determined for the given freight demands, and then the vehicle allocation has to be made in consideration of routing for the associated direct service fulfillment subject to vehicle capacity and service time restriction. The problem is modeled as a path-based formulation for which a tabu-search-based solution algorithm is proposed. To guarantee the performance of the proposed solution algorithm, strong valid inequalities are derived based on the polyhedral characteristics of the problem domain and an efficient separation heuristic is derived for identifying any violated valid inequalities. Computational experiments are performed to test the performance of the proposed solution algorithm and also that of a valid-inequality separation algorithm, which finds that the solution algorithm works quite well and the separation algorithm provides strengthened lower bounds. Its immediate application may be made to strategic (integrated) service network designs and to tactical service network planning for the CD network.

Suggested Citation

  • C S Sung & S H Song, 2003. "Integrated service network design for a cross-docking supply chain network," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(12), pages 1283-1295, December.
  • Handle: RePEc:pal:jorsoc:v:54:y:2003:i:12:d:10.1057_palgrave.jors.2601645
    DOI: 10.1057/palgrave.jors.2601645
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2601645
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2601645?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cynthia Barnhart & Rina R. Schneur, 1996. "Air Network Design for Express Shipment Service," Operations Research, INFORMS, vol. 44(6), pages 852-863, December.
    2. Turgut Aykin, 1995. "Networking Policies for Hub-and-Spoke Systems with Application to the Air Transportation System," Transportation Science, INFORMS, vol. 29(3), pages 201-221, August.
    3. Teodor Gabriel Crainic & Jacques Roy, 1992. "Design of Regular Intercity Driver Routes for the LTL Motor Carrier Industry," Transportation Science, INFORMS, vol. 26(4), pages 280-295, November.
    4. Warren B. Powell & Yosef Sheffi, 1989. "OR Practice—Design and Implementation of an Interactive Optimization System for Network Design in the Motor Carrier Industry," Operations Research, INFORMS, vol. 37(1), pages 12-29, February.
    5. Daeki Kim & Cynthia Barnhart & Keith Ware & Gregory Reinhardt, 1999. "Multimodal Express Package Delivery: A Service Network Design Application," Transportation Science, INFORMS, vol. 33(4), pages 391-407, November.
    6. Sung, C. S. & Jin, H. W., 2001. "Dual-based approach for a hub network design problem under non-restrictive policy," European Journal of Operational Research, Elsevier, vol. 132(1), pages 88-105, July.
    7. Steven Chamberland & Brunilde Sansò, 2001. "On the Design Problem of Multitechnology Networks," INFORMS Journal on Computing, INFORMS, vol. 13(3), pages 245-256, August.
    8. Erenguc, S. Selcuk & Simpson, N. C. & Vakharia, Asoo J., 1999. "Integrated production/distribution planning in supply chains: An invited review," European Journal of Operational Research, Elsevier, vol. 115(2), pages 219-236, June.
    9. Crainic, Teodor Gabriel & Laporte, Gilbert, 1997. "Planning models for freight transportation," European Journal of Operational Research, Elsevier, vol. 97(3), pages 409-438, March.
    10. Grunert, Tore & Sebastian, Hans-Jurgen, 2000. "Planning models for long-haul operations of postal and express shipment companies," European Journal of Operational Research, Elsevier, vol. 122(2), pages 289-309, April.
    11. Melkote, Sanjay & Daskin, Mark S., 2001. "An integrated model of facility location and transportation network design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(6), pages 515-538, July.
    12. Warren B. Powell, 1986. "A Local Improvement Heuristic for the Design of Less-than-Truckload Motor Carrier Networks," Transportation Science, INFORMS, vol. 20(4), pages 246-257, November.
    13. Campbell, James F., 1994. "Integer programming formulations of discrete hub location problems," European Journal of Operational Research, Elsevier, vol. 72(2), pages 387-405, January.
    14. Crainic, Teodor Gabriel, 2000. "Service network design in freight transportation," European Journal of Operational Research, Elsevier, vol. 122(2), pages 272-288, April.
    15. Judith M. Farvolden & Warren B. Powell, 1994. "Subgradient Methods for the Service Network Design Problem," Transportation Science, INFORMS, vol. 28(3), pages 256-272, August.
    16. Steven Chamberland & Brunilde Sansò & Odile Marcotte, 2000. "Topological Design of Two-Level Telecommunication Networks with Modular Switches," Operations Research, INFORMS, vol. 48(5), pages 745-760, October.
    17. Andrew P. Armacost & Cynthia Barnhart & Keith A. Ware, 2002. "Composite Variable Formulations for Express Shipment Service Network Design," Transportation Science, INFORMS, vol. 36(1), pages 1-20, February.
    18. C S Sung & S H Song, 2003. "Branch-and-price algorithm for a combined problem of virtual path establishment and traffic packet routing in a layered communication network," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(1), pages 72-82, January.
    19. Thomas L. Magnanti & Prakash Mirchandani & Rita Vachani, 1995. "Modeling and Solving the Two-Facility Capacitated Network Loading Problem," Operations Research, INFORMS, vol. 43(1), pages 142-157, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Buijs, Paul & Vis, Iris F.A. & Carlo, Héctor J., 2014. "Synchronization in cross-docking networks: A research classification and framework," European Journal of Operational Research, Elsevier, vol. 239(3), pages 593-608.
    2. Ieva Meidute-Kavaliauskiene & Nihal Sütütemiz & Figen Yıldırım & Shahryar Ghorbani & Renata Činčikaitė, 2022. "Optimizing Multi Cross-Docking Systems with a Multi-Objective Green Location Routing Problem Considering Carbon Emission and Energy Consumption," Energies, MDPI, vol. 15(4), pages 1-24, February.
    3. Shi, Wen & Liu, Zhixue & Shang, Jennifer & Cui, Yujia, 2013. "Multi-criteria robust design of a JIT-based cross-docking distribution center for an auto parts supply chain," European Journal of Operational Research, Elsevier, vol. 229(3), pages 695-706.
    4. Prashant Barsing & Yash Daultani & Omkarprasad S. Vaidya & Sushil Kumar, 2018. "Cross-docking Centre Location in a Supply Chain Network: A Social Network Analysis Approach," Global Business Review, International Management Institute, vol. 19(3_suppl), pages 218-234, June.
    5. Van Belle, Jan & Valckenaers, Paul & Cattrysse, Dirk, 2012. "Cross-docking: State of the art," Omega, Elsevier, vol. 40(6), pages 827-846.
    6. İlker Küçükoğlu & Nursel Öztürk, 2017. "Two-stage optimisation method for material flow and allocation management in cross-docking networks," International Journal of Production Research, Taylor & Francis Journals, vol. 55(2), pages 410-429, January.
    7. Shih-Che Lo, 2022. "A Particle Swarm Optimization Approach to Solve the Vehicle Routing Problem with Cross-Docking and Carbon Emissions Reduction in Logistics Management," Logistics, MDPI, vol. 6(3), pages 1-15, September.
    8. Wang, Haibo & Alidaee, Bahram, 2019. "The multi-floor cross-dock door assignment problem: Rising challenges for the new trend in logistics industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 132(C), pages 30-47.
    9. Zhaowei Miao & Feng Yang & Ke Fu & Dongsheng Xu, 2012. "Transshipment service through crossdocks with both soft and hard time windows," Annals of Operations Research, Springer, vol. 192(1), pages 21-47, January.
    10. C S Sung & W Yang, 2008. "An exact algorithm for a cross-docking supply chain network design problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(1), pages 119-136, January.
    11. Konur, Dinçer & Golias, Mihalis M., 2013. "Cost-stable truck scheduling at a cross-dock facility with unknown truck arrivals: A meta-heuristic approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 71-91.
    12. Saeid Nasrollahi & Hasan Hosseini-Nasab & Mohamad Bagher Fakhrzad & Mahboobeh Honarvar, 2022. "A developed nonlinear model for the location-allocation and transportation problems in a cross-docking distribution network," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 32(1), pages 127-148.
    13. Christina N. Burt & Lou Caccetta, 2014. "Equipment Selection for Surface Mining: A Review," Interfaces, INFORMS, vol. 44(2), pages 143-162, April.
    14. Ágota Bányai, 2013. "Just In Sequence Supply With Multilevel Cross Docking," Advanced Logistic systems, University of Miskolc, Department of Material Handling and Logistics, vol. 7(2), pages 5-12, December.
    15. Saeid Nasrollahi & Hasan Hosseini-Nasab & Mohammad Bagher Fakhrzad & Mahboobeh Honarvar, 2023. "A multi-stage stochastic model for designing a linked cross-docking distribution network with heterogeneous trucks," Operational Research, Springer, vol. 23(1), pages 1-41, March.
    16. M Wen & J Larsen & J Clausen & J-F Cordeau & G Laporte, 2009. "Vehicle routing with cross-docking," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1708-1718, December.
    17. Shi, Wen & Shang, Jennifer & Liu, Zhixue & Zuo, Xiaolu, 2014. "Optimal design of the auto parts supply chain for JIT operations: Sequential bifurcation factor screening and multi-response surface methodology," European Journal of Operational Research, Elsevier, vol. 236(2), pages 664-676.
    18. Liao, T.W. & Egbelu, P.J. & Chang, P.C., 2013. "Simultaneous dock assignment and sequencing of inbound trucks under a fixed outbound truck schedule in multi-door cross docking operations," International Journal of Production Economics, Elsevier, vol. 141(1), pages 212-229.
    19. Asefeh Hasani Goodarzi & Seyed Hessameddin Zegordi & Gülgün Alpan & Isa Nakhai Kamalabadi & Ali Husseinzadeh Kashan, 2021. "Reliable cross-docking location problem under the risk of disruptions," Operational Research, Springer, vol. 21(3), pages 1569-1612, September.
    20. Amalia I. Nikolopoulou & Panagiotis P. Repoussis & Christos D. Tarantilis & Emmanouil E. Zachariadis, 2019. "Adaptive memory programming for the many-to-many vehicle routing problem with cross-docking," Operational Research, Springer, vol. 19(1), pages 1-38, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C S Sung & W Yang, 2008. "An exact algorithm for a cross-docking supply chain network design problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(1), pages 119-136, January.
    2. Xin Wang & Teodor Gabriel Crainic & Stein W. Wallace, 2019. "Stochastic Network Design for Planning Scheduled Transportation Services: The Value of Deterministic Solutions," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 153-170, February.
    3. Dall'Orto, Leonardo Campo & Crainic, Teodor Gabriel & Leal, Jose Eugenio & Powell, Warren B., 2006. "The single-node dynamic service scheduling and dispatching problem," European Journal of Operational Research, Elsevier, vol. 170(1), pages 1-23, April.
    4. Ahmad Baubaid & Natashia Boland & Martin Savelsbergh, 2021. "The Value of Limited Flexibility in Service Network Designs," Transportation Science, INFORMS, vol. 55(1), pages 52-74, 1-2.
    5. Arnt-Gunnar Lium & Teodor Gabriel Crainic & Stein W. Wallace, 2009. "A Study of Demand Stochasticity in Service Network Design," Transportation Science, INFORMS, vol. 43(2), pages 144-157, May.
    6. Crainic, Teodor Gabriel, 2000. "Service network design in freight transportation," European Journal of Operational Research, Elsevier, vol. 122(2), pages 272-288, April.
    7. G. Guastaroba & M. G. Speranza & D. Vigo, 2016. "Intermediate Facilities in Freight Transportation Planning: A Survey," Transportation Science, INFORMS, vol. 50(3), pages 763-789, August.
    8. Ahmad I. Jarrah & Ellis Johnson & Lucas C. Neubert, 2009. "Large-Scale, Less-than-Truckload Service Network Design," Operations Research, INFORMS, vol. 57(3), pages 609-625, June.
    9. Meuffels, W.J.M., 2015. "The design of road and air networks for express service providers," Other publications TiSEM d3266cb8-bc55-41be-adc7-4, Tilburg University, School of Economics and Management.
    10. Grunert, Tore & Sebastian, Hans-Jurgen, 2000. "Planning models for long-haul operations of postal and express shipment companies," European Journal of Operational Research, Elsevier, vol. 122(2), pages 289-309, April.
    11. Lai, M. F. & Lo, Hong K., 2004. "Ferry service network design: optimal fleet size, routing, and scheduling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(4), pages 305-328, May.
    12. Andrew P. Armacost & Cynthia Barnhart & Keith A. Ware, 2002. "Composite Variable Formulations for Express Shipment Service Network Design," Transportation Science, INFORMS, vol. 36(1), pages 1-20, February.
    13. Anantaram Balakrishnan & Gang Li & Prakash Mirchandani, 2017. "Optimal Network Design with End-to-End Service Requirements," Operations Research, INFORMS, vol. 65(3), pages 729-750, June.
    14. Jansen, Benjamin & Swinkels, Pieter C. J. & Teeuwen, Geert J. A. & van Antwerpen de Fluiter, Babette & Fleuren, Hein A., 2004. "Operational planning of a large-scale multi-modal transportation system," European Journal of Operational Research, Elsevier, vol. 156(1), pages 41-53, July.
    15. Hewitt, Mike & Crainic, Teodor Gabriel & Nowak, Maciek & Rei, Walter, 2019. "Scheduled service network design with resource acquisition and management under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 324-343.
    16. Louwerse, I. & Mijnarends, J. & Meuffels, I. & Huisman, D. & Fleuren, H.A., 2012. "Scheduling Movements in the Network of an Express Service Provider," Econometric Institute Research Papers EI 2012-08, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    17. Naga V. C. Gudapati & Enrico Malaguti & Michele Monaci, 2022. "Network Design with Service Requirements: Scaling-up the Size of Solvable Problems," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2571-2582, September.
    18. Eskandarzadeh, Saman & Fahimnia, Behnam, 2024. "Containerised parcel delivery: Modelling and performance evaluation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    19. Andrew P. Armacost & Cynthia Barnhart & Keith A. Ware & Alysia M. Wilson, 2004. "UPS Optimizes Its Air Network," Interfaces, INFORMS, vol. 34(1), pages 15-25, February.
    20. Quesada Pérez, José Miguel & Lange, Jean-Charles & Tancrez, Jean-Sébastien, 2018. "A multi-hub Express Shipment Service Network Design model with flexible hub assignment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 120(C), pages 116-131.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:54:y:2003:i:12:d:10.1057_palgrave.jors.2601645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.