IDEAS home Printed from https://ideas.repec.org/a/gam/jlogis/v6y2022i4p72-d938018.html
   My bibliography  Save this article

MDEALNS for Solving the Tapioca Starch Logistics Network Problem for the Land Port of Nakhon Ratchasima Province, Thailand

Author

Listed:
  • Chakat Chueadee

    (Department of Industrial Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand)

  • Preecha Kriengkorakot

    (Department of Industrial Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand)

  • Nuchsara Kriengkorakot

    (Department of Industrial Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand)

Abstract

Background: This research aimed to establish a network linked to generation, for the transport route of tapioca starch products to a land port, serving as the logistics hub of Thailand’s Nakhon Ratchasima province. Methods : The adaptive large neighborhood search (ALNS) algorithm, combined with the differential evolution (DE) approach, was used for the problem analysis, and this method was named modified differential evolution adaptive large neighborhood search (MDEALNS) is a new method that includes six steps, which are (1) initialization, (2) mutation, (3) recombination, (4) updating with ALNS, (5) Selection and (6) repeat the (2) to (5) steps until the termination condition is met. The MDEALNS algorithm designed a logistics network linking the optimal route and a suitable open/close factory allocation with the lowest transport cost for tapioca starch. The operating supply chain of tapioca starch manufacturing in the case study. The proposed methods have been tested with datasets of the three groups of test instances and the case study consisted of 404 farms, 33 factories, and 1 land port. Results: The computational results show that MDEALNS method can reduced the distance and the fuel cost and outperformed the highest performance of the original method used by LINGO, DE, and ALNS. Conclusions: The computational results show that MDEALNS method can reduced the distance and the fuel cost and outperformed the highest performance of the original method used by LINGO, DE, and ALNS.

Suggested Citation

  • Chakat Chueadee & Preecha Kriengkorakot & Nuchsara Kriengkorakot, 2022. "MDEALNS for Solving the Tapioca Starch Logistics Network Problem for the Land Port of Nakhon Ratchasima Province, Thailand," Logistics, MDPI, vol. 6(4), pages 1-24, October.
  • Handle: RePEc:gam:jlogis:v:6:y:2022:i:4:p:72-:d:938018
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2305-6290/6/4/72/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2305-6290/6/4/72/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mansour Rahimi & Ardavan Asef-Vaziri & Robert Harrison, 2008. "An Inland Port Location-Allocation Model for a Regional Intermodal Goods Movement System," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 10(4), pages 362-379, December.
    2. Chuanxu Wang & Qian Chen & Rongbing Huang, 2018. "Locating dry ports on a network: a case study on Tianjin Port," Maritime Policy & Management, Taylor & Francis Journals, vol. 45(1), pages 71-88, January.
    3. Snežana Tadić & Mladen Krstić & Violeta Roso & Nikolina Brnjac, 2020. "Dry Port Terminal Location Selection by Applying the Hybrid Grey MCDM Model," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    4. Roso, Violeta & Woxenius, Johan & Lumsden, Kenth, 2009. "The dry port concept: connecting container seaports with the hinterland," Journal of Transport Geography, Elsevier, vol. 17(5), pages 338-345.
    5. Juliana Castaneda & Elnaz Ghorbani & Majsa Ammouriova & Javier Panadero & Angel A. Juan, 2022. "Optimizing Transport Logistics under Uncertainty with Simheuristics: Concepts, Review and Trends," Logistics, MDPI, vol. 6(3), pages 1-15, June.
    6. Bing Han & Shanshan Shi & Haotian Gao & Yan Hu, 2022. "A Sustainable Intermodal Location-Routing Optimization Approach: A Case Study of the Bohai Rim Region," Sustainability, MDPI, vol. 14(7), pages 1-27, March.
    7. Ercan Kurtulus & Ismail Bilge Cetin, 2019. "Assessing the Environmental Benefits of Dry Port Usage: A Case of Inland Container Transport in Turkey," Sustainability, MDPI, vol. 11(23), pages 1-16, November.
    8. Shih-Che Lo, 2022. "A Particle Swarm Optimization Approach to Solve the Vehicle Routing Problem with Cross-Docking and Carbon Emissions Reduction in Logistics Management," Logistics, MDPI, vol. 6(3), pages 1-15, September.
    9. Maximilian Kardung & Kutay Cingiz & Ortwin Costenoble & Roel Delahaye & Wim Heijman & Marko Lovrić & Myrna van Leeuwen & Robert M’Barek & Hans van Meijl & Stephan Piotrowski & Tévécia Ronzon & Johanne, 2021. "Development of the Circular Bioeconomy: Drivers and Indicators," Sustainability, MDPI, vol. 13(1), pages 1-24, January.
    10. Weidong Li & Olli-Pekka Hilmola & Yulia Panova, 2019. "Container Sea Ports and Dry Ports: Future CO 2 Emission Reduction Potential in China," Sustainability, MDPI, vol. 11(6), pages 1-21, March.
    11. Ross Robinson, 2002. "Ports as elements in value-driven chain systems: the new paradigm," Maritime Policy & Management, Taylor & Francis Journals, vol. 29(3), pages 241-255.
    12. Fazi, Stefano & Fransoo, Jan C. & Van Woensel, Tom & Dong, Jing-Xin, 2020. "A variant of the split vehicle routing problem with simultaneous deliveries and pickups for inland container shipping in dry-port based systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    13. Henttu, Ville & Hilmola, Olli-Pekka, 2011. "Financial and environmental impacts of hypothetical Finnish dry port structure," Research in Transportation Economics, Elsevier, vol. 33(1), pages 35-41.
    14. Jason Monios & Gordon Wilmsmeier, 2012. "Port-centric logistics, dry ports and offshore logistics hubs: strategies to overcome double peripherality?," Maritime Policy & Management, Taylor & Francis Journals, vol. 39(2), pages 207-226, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Snežana Tadić & Mladen Krstić & Violeta Roso & Nikolina Brnjac, 2020. "Dry Port Terminal Location Selection by Applying the Hybrid Grey MCDM Model," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    2. Yiran Sun & Yuqian Wang & Jingci Xie, 2022. "The co-evolution of seaports and dry ports in Shandong province in China under the Belt and Road Initiative," Journal of Shipping and Trade, Springer, vol. 7(1), pages 1-27, December.
    3. Dmitri Muravev & Aleksandr Rakhmangulov & Hao Hu & Hengshuo Zhou, 2019. "The Introduction to System Dynamics Approach to Operational Efficiency and Sustainability of Dry Port’s Main Parameters," Sustainability, MDPI, vol. 11(8), pages 1-21, April.
    4. Monios, Jason & Wilmsmeier, Gordon, 2013. "The role of intermodal transport in port regionalisation," Transport Policy, Elsevier, vol. 30(C), pages 161-172.
    5. de Almeida Rodrigues, Thiago & Maria de Miranda Mota, Caroline & Manuele dos Santos, Inez, 2021. "Determining dry port criteria that support decision making," Research in Transportation Economics, Elsevier, vol. 88(C).
    6. Alena Khaslavskaya & Violeta Roso, 2020. "Dry ports: research outcomes, trends, and future implications," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(2), pages 265-292, June.
    7. Monios, Jason & Wilmsmeier, Gordon, 2012. "Giving a direction to port regionalisation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1551-1561.
    8. Egor PLOTNIKOV & Aleksandr RAKHMANGULOV, 2021. "Modeling China'S Dry Port Cooperation In Supply Chains," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 16(3), pages 89-103, September.
    9. Dadashpoor, Hashem & Arasteh, Mojtaba, 2020. "Core-port connectivity: Towards shaping a national hinterland in a West Asia country," Transport Policy, Elsevier, vol. 88(C), pages 57-68.
    10. Bask, Anu & Roso, Violeta & Andersson, Dan & Hämäläinen, Erkki, 2014. "Development of seaport–dry port dyads: two cases from Northern Europe," Journal of Transport Geography, Elsevier, vol. 39(C), pages 85-95.
    11. Xu, Haonan & Liu, Jiaguo & Qi, Siwen, 2024. "Incentive policy for rail-water multimodal transport: Subsidizing price or constructing dry port?," Transport Policy, Elsevier, vol. 150(C), pages 219-243.
    12. Qiu, Xuan & Lam, Jasmine Siu Lee & Huang, George Q., 2015. "A bilevel storage pricing model for outbound containers in a dry port system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 65-83.
    13. Lättilä, Lauri & Henttu, Ville & Hilmola, Olli-Pekka, 2013. "Hinterland operations of sea ports do matter: Dry port usage effects on transportation costs and CO2 emissions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 55(C), pages 23-42.
    14. Wu, Zhen & Woo, Su-Han & Lai, Po-Lin & Chen, Xiaoyi, 2022. "The economic impact of inland ports on regional development: Evidence from the Yangtze River region," Transport Policy, Elsevier, vol. 127(C), pages 80-91.
    15. Jason Monios & Gordon Wilmsmeier, 2014. "The Impact of Container Type Diversification on Regional British Port Development Strategies," Transport Reviews, Taylor & Francis Journals, vol. 34(5), pages 583-606, September.
    16. Jiang, Xiaodan & Fan, Houming & Luo, Meifeng & Xu, Zhenlin, 2020. "Strategic port competition in multimodal network development considering shippers’ choice," Transport Policy, Elsevier, vol. 90(C), pages 68-89.
    17. Su-Han Woo & Stephen Pettit & Anthony Beresford & Dong-Wook Kwak, 2012. "Seaport Research: A Decadal Analysis of Trends and Themes Since the 1980s," Transport Reviews, Taylor & Francis Journals, vol. 32(3), pages 351-377, January.
    18. Chen, Rui & Meng, Qiang & Jia, Peng, 2022. "Container port drayage operations and management: Past and future," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    19. Bergqvist, Rickard & Monios, Jason, 2021. "Drivers for migration of an intermodal network hub from a port to an inland terminal," Journal of Transport Geography, Elsevier, vol. 91(C).
    20. Ercan Kurtulus & Ismail Bilge Cetin, 2019. "Assessing the Environmental Benefits of Dry Port Usage: A Case of Inland Container Transport in Turkey," Sustainability, MDPI, vol. 11(23), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlogis:v:6:y:2022:i:4:p:72-:d:938018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.