IDEAS home Printed from https://ideas.repec.org/a/gam/jlogis/v5y2021i1p15-d514412.html
   My bibliography  Save this article

Closed-Loop Supply Chain Network Design under Uncertainties Using Fuzzy Decision Making

Author

Listed:
  • Zhengyang Hu

    (Industrial and Manufacturing Systems Engineering (IMSE), Iowa State University, Ames, IA 50011, USA)

  • Viren Parwani

    (Industrial and Manufacturing Systems Engineering (IMSE), Iowa State University, Ames, IA 50011, USA)

  • Guiping Hu

    (Industrial and Manufacturing Systems Engineering (IMSE), Iowa State University, Ames, IA 50011, USA)

Abstract

The importance of considering forward and backward flows simultaneously in supply chain networks spurs an interest to develop closed-loop supply chain networks (CLSCN). Due to the expanded scope in the supply chain, designing CLSCN often faces significant uncertainties. This paper proposes a fuzzy multi-objective mixed-integer linear programming model to deal with uncertain parameters in CLSCN. The two objective functions are minimization of overall system costs and minimization of negative environmental impact. Negative environmental impacts are measured and quantified through CO 2 equivalent emission. Uncertainties include demand, return, scrap rate, manufacturing cost and negative environmental factors. The original formulation with uncertain parameters is firstly converted into a crisp model and then an aggregation function is applied to combine the objective functions. Numerical experiments have been carried out to demonstrate the effectiveness of the proposed model formulation and solution approach. Sensitivity analyses on degree of feasibility, the weighing of objective functions and coefficient of compensation have been conducted. This model can be applied to a variety of real-world situations, such as in the manufacturing production processes.

Suggested Citation

  • Zhengyang Hu & Viren Parwani & Guiping Hu, 2021. "Closed-Loop Supply Chain Network Design under Uncertainties Using Fuzzy Decision Making," Logistics, MDPI, vol. 5(1), pages 1-16, March.
  • Handle: RePEc:gam:jlogis:v:5:y:2021:i:1:p:15-:d:514412
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2305-6290/5/1/15/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2305-6290/5/1/15/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ehsan Shekarian & Simme Douwe Flapper, 2021. "Analyzing the Structure of Closed-Loop Supply Chains: A Game Theory Perspective," Sustainability, MDPI, vol. 13(3), pages 1-32, January.
    2. Hu, Zhengyang & Hu, Guiping, 2020. "Hybrid stochastic and robust optimization model for lot-sizing and scheduling problems under uncertainties," European Journal of Operational Research, Elsevier, vol. 284(2), pages 485-497.
    3. Keyvanshokooh, Esmaeil & Ryan, Sarah M. & Kabir, Elnaz, 2016. "Hybrid robust and stochastic optimization for closed-loop supply chain network design using accelerated Benders decomposition," European Journal of Operational Research, Elsevier, vol. 249(1), pages 76-92.
    4. Wang, Reay-Chen & Liang, Tien-Fu, 2005. "Applying possibilistic linear programming to aggregate production planning," International Journal of Production Economics, Elsevier, vol. 98(3), pages 328-341, December.
    5. Klibi, Walid & Martel, Alain & Guitouni, Adel, 2010. "The design of robust value-creating supply chain networks: A critical review," European Journal of Operational Research, Elsevier, vol. 203(2), pages 283-293, June.
    6. Haddadsisakht, Ali & Ryan, Sarah M., 2018. "Closed-loop supply chain network design with multiple transportation modes under stochastic demand and uncertain carbon tax," International Journal of Production Economics, Elsevier, vol. 195(C), pages 118-131.
    7. Mirzapour Al-e-hashem, S.M.J. & Malekly, H. & Aryanezhad, M.B., 2011. "A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty," International Journal of Production Economics, Elsevier, vol. 134(1), pages 28-42, November.
    8. Gülpınar, Nalan & Pachamanova, Dessislava & Çanakoğlu, Ethem, 2013. "Robust strategies for facility location under uncertainty," European Journal of Operational Research, Elsevier, vol. 225(1), pages 21-35.
    9. Jimenez, Mariano & Arenas, Mar & Bilbao, Amelia & Rodri'guez, M. Victoria, 2007. "Linear programming with fuzzy parameters: An interactive method resolution," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1599-1609, March.
    10. Prajogo, Daniel & Olhager, Jan, 2012. "Supply chain integration and performance: The effects of long-term relationships, information technology and sharing, and logistics integration," International Journal of Production Economics, Elsevier, vol. 135(1), pages 514-522.
    11. Hu, Zhengyang & Hu, Guiping, 2016. "A two-stage stochastic programming model for lot-sizing and scheduling under uncertainty," International Journal of Production Economics, Elsevier, vol. 180(C), pages 198-207.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sourour Aouadni & Jalel Euchi, 2022. "Using Integrated MMD-TOPSIS to Solve the Supplier Selection and Fair Order Allocation Problem: A Tunisian Case Study," Logistics, MDPI, vol. 6(1), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tosarkani, Babak Mohamadpour & Amin, Saman Hassanzadeh & Zolfagharinia, Hossein, 2020. "A scenario-based robust possibilistic model for a multi-objective electronic reverse logistics network," International Journal of Production Economics, Elsevier, vol. 224(C).
    2. A. Mohammed, 2020. "Towards a sustainable assessment of suppliers: an integrated fuzzy TOPSIS-possibilistic multi-objective approach," Annals of Operations Research, Springer, vol. 293(2), pages 639-668, October.
    3. Wang, Gang & Gunasekaran, Angappa & Ngai, Eric W.T. & Papadopoulos, Thanos, 2016. "Big data analytics in logistics and supply chain management: Certain investigations for research and applications," International Journal of Production Economics, Elsevier, vol. 176(C), pages 98-110.
    4. Ivanov, Dmitry & Sokolov, Boris, 2013. "Control and system-theoretic identification of the supply chain dynamics domain for planning, analysis and adaptation of performance under uncertainty," European Journal of Operational Research, Elsevier, vol. 224(2), pages 313-323.
    5. Azad, Nader & Hassini, Elkafi, 2019. "Recovery strategies from major supply disruptions in single and multiple sourcing networks," European Journal of Operational Research, Elsevier, vol. 275(2), pages 481-501.
    6. Rihab Khemiri & Khaoula Elbedoui-Maktouf & Bernard Grabot & Belhassen Zouari, 2017. "A fuzzy multi-criteria decision making approach for managing performance and risk in integrated procurement-production planning," Post-Print hal-01758604, HAL.
    7. Mohammed, Ahmed & Harris, Irina & Govindan, Kannan, 2019. "A hybrid MCDM-FMOO approach for sustainable supplier selection and order allocation," International Journal of Production Economics, Elsevier, vol. 217(C), pages 171-184.
    8. Mohammed, Ahmed & Wang, Qian, 2017. "The fuzzy multi-objective distribution planner for a green meat supply chain," International Journal of Production Economics, Elsevier, vol. 184(C), pages 47-58.
    9. Mingqiang Yin & Min Huang & Xiaohu Qian & Dazhi Wang & Xingwei Wang & Loo Hay Lee, 2023. "Fourth-party logistics network design with service time constraint under stochastic demand," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1203-1227, March.
    10. Figueroa–García, Juan Carlos & Hernández, Germán & Franco, Carlos, 2022. "A review on history, trends and perspectives of fuzzy linear programming," Operations Research Perspectives, Elsevier, vol. 9(C).
    11. Van Engeland, Jens & Beliën, Jeroen & De Boeck, Liesje & De Jaeger, Simon, 2020. "Literature review: Strategic network optimization models in waste reverse supply chains," Omega, Elsevier, vol. 91(C).
    12. Yasser A. Davizón & César Martínez-Olvera & Rogelio Soto & Carlos Hinojosa & Piero Espino-Román, 2015. "Optimal Control Approaches to the Aggregate Production Planning Problem," Sustainability, MDPI, vol. 7(12), pages 1-16, December.
    13. Javid Jouzdani & Mohammad Fathian & Ahmad Makui & Mehdi Heydari, 2020. "Robust design and planning for a multi-mode multi-product supply network: a dairy industry case study," Operational Research, Springer, vol. 20(3), pages 1811-1840, September.
    14. Masoud Esmaeilikia & Behnam Fahimnia & Joeseph Sarkis & Kannan Govindan & Arun Kumar & John Mo, 2016. "A tactical supply chain planning model with multiple flexibility options: an empirical evaluation," Annals of Operations Research, Springer, vol. 244(2), pages 429-454, September.
    15. Shiva Zokaee & Armin Jabbarzadeh & Behnam Fahimnia & Seyed Jafar Sadjadi, 2017. "Robust supply chain network design: an optimization model with real world application," Annals of Operations Research, Springer, vol. 257(1), pages 15-44, October.
    16. Alzaman, Chaher & Zhang, Zhi-Hai & Diabat, Ali, 2018. "Supply chain network design with direct and indirect production costs: Hybrid gradient and local search based heuristics," International Journal of Production Economics, Elsevier, vol. 203(C), pages 203-215.
    17. Pereira, Daniel Filipe & Oliveira, José Fernando & Carravilla, Maria Antónia, 2020. "Tactical sales and operations planning: A holistic framework and a literature review of decision-making models," International Journal of Production Economics, Elsevier, vol. 228(C).
    18. Jahani, Hamed & Abbasi, Babak & Sheu, Jiuh-Biing & Klibi, Walid, 2024. "Supply chain network design with financial considerations: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 312(3), pages 799-839.
    19. Jahani, Hamed & Abbasi, Babak & Alavifard, Farzad & Talluri, Srinivas, 2018. "Supply chain network redesign with demand and price uncertainty," International Journal of Production Economics, Elsevier, vol. 205(C), pages 287-312.
    20. Mohammaddust, Faeghe & Rezapour, Shabnam & Farahani, Reza Zanjirani & Mofidfar, Mohammad & Hill, Alex, 2017. "Developing lean and responsive supply chains: A robust model for alternative risk mitigation strategies in supply chain designs," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 632-653.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlogis:v:5:y:2021:i:1:p:15-:d:514412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.