IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i12p486-d454882.html
   My bibliography  Save this article

Local Knowledge about Ecosystem Services Provided by Trees in Coffee Agroforestry Practices in Northwest Vietnam

Author

Listed:
  • Mai Phuong Nguyen

    (World Agroforestry, Vietnam Office, Hanoi 100000, Vietnam)

  • Philippe Vaast

    (World Agroforestry, Vietnam Office, Hanoi 100000, Vietnam
    UMR Eco&Sols, CIRAD, Université Montpellier, 34090 Montpellier, France)

  • Tim Pagella

    (School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2DG, UK)

  • Fergus Sinclair

    (School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2DG, UK
    World Agroforestry, Headquarter Office, P.O. Box 30677, Nairobi 00100, Kenya)

Abstract

In recent decades in northwest Vietnam, Arabica coffee has been grown on sloping land in intensive, full sun monocultures that are not sustainable in the long term and have negative environmental impacts. There is an urgent need to reverse this negative trend by promoting good agricultural practices, including agroforestry, to prevent further deforestation and soil erosion on slopes. A survey of 124 farmers from three indigenous groups was conducted in northwest Vietnam to document coffee agroforestry practices and the ecosystem services associated with different tree species used in them. Trees were ranked according to the main ecosystem services and disservices considered to be locally relevant by rural communities. Our results show that tree species richness in agroforestry plots was much higher for coffee compared to non-coffee plots, including those with annual crops and tree plantations. Most farmers were aware of the benefits of trees for soil improvement, shelter (from wind and frost), and the provision of shade and mulch. In contrast, farmers had limited knowledge of the impact of trees on coffee quality and other interactions amongst trees and coffee. Farmers ranked the leguminous tree species Leucaena leucocephala as the best for incorporating in coffee plots because of the services it provides to coffee. Nonetheless, the farmers’ selection of tree species to combine with coffee was highly influenced by economic benefits provided, especially by intercropped fruit trees, which was influenced by market access, determined by the proximity of farms to a main road. The findings from this research will help local extension institutions and farmers select appropriate tree species that suit the local context and that match household needs and constraints, thereby facilitating the transition to a more sustainable and climate-smart coffee production practice.

Suggested Citation

  • Mai Phuong Nguyen & Philippe Vaast & Tim Pagella & Fergus Sinclair, 2020. "Local Knowledge about Ecosystem Services Provided by Trees in Coffee Agroforestry Practices in Northwest Vietnam," Land, MDPI, vol. 9(12), pages 1-27, December.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:12:p:486-:d:454882
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/12/486/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/12/486/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eric Rahn & Peter Läderach & María Baca & Charlotte Cressy & Götz Schroth & Daniella Malin & Henk Rikxoort & Jefferson Shriver, 2014. "Climate change adaptation, mitigation and livelihood benefits in coffee production: where are the synergies?," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(8), pages 1119-1137, December.
    2. Amarasinghe, Upali A. & Hoanh, Chu Thai & D'haeze, Dave & Hung, Tran Quoc, 2015. "Toward sustainable coffee production in Vietnam: More coffee with less water," Agricultural Systems, Elsevier, vol. 136(C), pages 96-105.
    3. Turner, Heather & Firth, David, 2012. "Bradley-Terry Models in R: The BradleyTerry2 Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i09).
    4. Cerdán, C.R. & Rebolledo, M.C. & Soto, G. & Rapidel, B. & Sinclair, F.L., 2012. "Local knowledge of impacts of tree cover on ecosystem services in smallholder coffee production systems," Agricultural Systems, Elsevier, vol. 110(C), pages 119-130.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azlan, Zulfadli Hazim Zul & Junaini, Syahrul Nizam & Bolhassan, Noor Alamshah, 2024. "Evidence of the potential benefits of digital technology integration in Asian agronomy and forestry: A systematic review," Agricultural Systems, Elsevier, vol. 217(C).
    2. Kibone Phionah & Buyinza Mukadasi, 2023. "Adoption Of Agroforestry Technologies And The Welfare Of Arabica Coffee Farmers In Bukhura Parish, Bududa District, Eastern Uganda," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 9(6), December.
    3. Beatrice Nöldeke & Etti Winter & Yves Laumonier & Trifosa Simamora, 2021. "Simulating Agroforestry Adoption in Rural Indonesia: The Potential of Trees on Farms for Livelihoods and Environment," Land, MDPI, vol. 10(4), pages 1-31, April.
    4. Meine van Noordwijk, 2021. "Agroforestry-Based Ecosystem Services," Land, MDPI, vol. 10(8), pages 1-8, July.
    5. Meine van Noordwijk, 2021. "Agroforestry-Based Ecosystem Services: Reconciling Values of Humans and Nature in Sustainable Development," Land, MDPI, vol. 10(7), pages 1-24, July.
    6. Elisabeth Simelton & Tuan Minh Duong & Ella Houzer, 2021. "When the “Strong Arms” Leave the Farms—Migration, Gender Roles and Risk Reduction in Vietnam," Sustainability, MDPI, vol. 13(7), pages 1-30, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. George Pavlidis & Vassilios A. Tsihrintzis, 2018. "Environmental Benefits and Control of Pollution to Surface Water and Groundwater by Agroforestry Systems: a Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 1-29, January.
    2. Duyen Nhat Lam Tran & Tien Dinh Nguyen & Thuy Thu Pham & Roberto F. Rañola & Thinh An Nguyen, 2021. "Improving Irrigation Water Use Efficiency of Robusta Coffee ( Coffea canephora ) Production in Lam Dong Province, Vietnam," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    3. Kouadio, Louis & Tixier, Philippe & Byrareddy, Vivekananda & Marcussen, Torben & Mushtaq, Shahbaz & Rapidel, Bruno & Stone, Roger, 2021. "Performance of a process-based model for predicting robusta coffee yield at the regional scale in Vietnam," Ecological Modelling, Elsevier, vol. 443(C).
    4. Cristiano Varin & Manuela Cattelan & David Firth, 2016. "Statistical modelling of citation exchange between statistics journals," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(1), pages 1-63, January.
    5. Kovalchik Stephanie Ann, 2016. "Searching for the GOAT of tennis win prediction," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 12(3), pages 127-138, September.
    6. Francesca Giambona & Mariano Porcu & Isabella Sulis, 2017. "Students Mobility: Assessing the Determinants of Attractiveness Across Competing Territorial Areas," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 133(3), pages 1105-1132, September.
    7. Valencia, Vivian & García-Barrios, Luis & Sterling, Eleanor J. & West, Paige & Meza-Jiménez, Amayrani & Naeem, Shahid, 2018. "Smallholder response to environmental change: Impacts of coffee leaf rust in a forest frontier in Mexico," Land Use Policy, Elsevier, vol. 79(C), pages 463-474.
    8. Villegas, Laura, 2017. "Shady Business: Why do Puerto Rican Coffee Farmers Adopt Conservation Agriculture Practices?," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259136, Agricultural and Applied Economics Association.
    9. Hankin, Robin K.S., 2020. "A generalization of the Bradley–Terry model for draws in chess with an application to collusion," Journal of Economic Behavior & Organization, Elsevier, vol. 180(C), pages 325-333.
    10. Kevin Pello & Cedric Okinda & Aijun Liu & Tim Njagi, 2021. "Factors Affecting Adaptation to Climate Change through Agroforestry in Kenya," Land, MDPI, vol. 10(4), pages 1-16, April.
    11. World Bank, "undated". "East Asia and Pacific Economic Update, April 2017," World Bank Publications - Reports 26332, The World Bank Group.
    12. Ota, Liz & Herbohn, John & Gregorio, Nestor & Harrison, Steve, 2020. "Reforestation and smallholder livelihoods in the humid tropics," Land Use Policy, Elsevier, vol. 92(C).
    13. Weichen Wu & Nynke Niezink & Brian Junker, 2022. "A diagnostic framework for the Bradley–Terry model," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 461-484, December.
    14. Johanna Gather & Meike Wollni, 2022. "Setting the standard: Does Rainforest Alliance Certification increase environmental and socio‐economic outcomes for small‐scale coffee producers in Rwanda?," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(4), pages 1807-1825, December.
    15. He, Siyuan & Gallagher, Louise & Su, Yang & Wang, Lei & Cheng, Hongguang, 2018. "Identification and assessment of ecosystem services for protected area planning: A case in rural communities of Wuyishan national park pilot," Ecosystem Services, Elsevier, vol. 31(PA), pages 169-180.
    16. Phan Thi Thuy & Le Duc Niem & Thi Minh Hop Ho & Philippe Burny & Philippe Lebailly, 2018. "Economic Analysis of Perennial Crop Systems in Dak Lak Province, Vietnam," Sustainability, MDPI, vol. 11(1), pages 1-14, December.
    17. Marcelo Daniel Gerlach & Sergio Esteban Lozano-Baez & Mirko Castellini & Nery Guzman & Wilmer Andrés Gomez & Bayron Medina, 2023. "Low Cost and Easy to Implement Physical and Hydrological Soil Assessment of Shade-Grown Coffee in Santa Rosa, Guatemala," Land, MDPI, vol. 12(2), pages 1-20, January.
    18. Galbraith, Sara M. & Hall, Troy E. & Tavárez, Héctor S. & Kooistra, Chad M. & Ordoñez, Jenny C. & Bosque-Pérez, Nilsa A., 2017. "Local ecological knowledge reveals effects of policy-driven land use and cover change on beekeepers in Costa Rica," Land Use Policy, Elsevier, vol. 69(C), pages 112-122.
    19. Daniel Gaitán-Cremaschi & Frits K. Van Evert & Don M. Jansen & Miranda P. M. Meuwissen & Alfons G. J. M. Oude Lansink, 2018. "Assessing the Sustainability Performance of Coffee Farms in Vietnam: A Social Profit Inefficiency Approach," Sustainability, MDPI, vol. 10(11), pages 1-23, November.
    20. Gunther Schauberger & Andreas Groll & Gerhard Tutz, 2018. "Analysis of the importance of on-field covariates in the German Bundesliga," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(9), pages 1561-1578, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:12:p:486-:d:454882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.