IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i11p420-d437593.html
   My bibliography  Save this article

Selecting Relevant Biological Variables Derived from Sentinel-2 Data for Mapping Changes from Grassland to Arable Land Using Random Forest Classifier

Author

Listed:
  • Jiří Šandera

    (EO4Landscape Research Team, Department of Applied Geoinformatics and Cartography, Faculty of Science, Charles University, Albertov 6, 128 42 Prague 2, Czech Republic)

  • Přemysl Štych

    (EO4Landscape Research Team, Department of Applied Geoinformatics and Cartography, Faculty of Science, Charles University, Albertov 6, 128 42 Prague 2, Czech Republic)

Abstract

Permanent grassland is one of the monitored categories of land use, land use change, and forestry (LULUCF) within the climate concept and greenhouse gas reduction policy (Regulation (EU) 2018/841). Mapping the conditions and changes of permanent grasslands is thus very important. The area of permanent grassland is strongly influenced by agricultural subsidy policies. Over the course of history, it is possible to trace different shares of permanent grassland within agricultural land and areas with significant changes from grassland to arable land. The need for monitoring permanent grassland and arable land has been growing in recent years. New subsidy policies determining farm management are beginning to affect land use, especially in countries that have joined the EU in recent waves. The large amount of freely available satellite data enables this monitoring to take place, mainly owing to data products of the Copernicus program. There are a large number of parameters (predictors) that can be calculated from satellite data, but finding the right combination is very difficult. This study presents a methodical, systematic procedure using the random forest classifier and its internal metric of mean decrease accuracy (MDA) to select the most suitable predictors to detect changes from permanent grassland to arable land. The relevance of suitable predictors takes into account the date of the satellite image, the overall accuracy of change detection, and the time required for calculations. Biological predictors, such as leaf area index (LAI), fraction absorbed photosynthetically active radiation (FAPAR), normalized difference vegetation index (NDVI), etc. were tested in the form of a time series from the Sentinel-2 satellite, and the most suitable ones were selected. FAPAR, canopy water content (CWC), and LAI seemed to be the most suitable. The proposed change detection procedure achieved a very high accuracy of more than 95% within the study site with an area of 8766 km 2 .

Suggested Citation

  • Jiří Šandera & Přemysl Štych, 2020. "Selecting Relevant Biological Variables Derived from Sentinel-2 Data for Mapping Changes from Grassland to Arable Land Using Random Forest Classifier," Land, MDPI, vol. 9(11), pages 1-20, October.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:11:p:420-:d:437593
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/11/420/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/11/420/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kursa, Miron B. & Rudnicki, Witold R., 2010. "Feature Selection with the Boruta Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i11).
    2. Lan H. Nguyen & Deepak R. Joshi & Geoffrey M. Henebry, 2019. "Improved Change Detection with Trajectory-Based Approach: Application to Quantify Cropland Expansion in South Dakota," Land, MDPI, vol. 8(4), pages 1-11, April.
    3. Martin Možný & Rudolf Brázdil & Petr Dobrovolný & Mirek Trnka, 2012. "Cereal harvest dates in the Czech Republic between 1501 and 2008 as a proxy for March–June temperature reconstruction," Climatic Change, Springer, vol. 110(3), pages 801-821, February.
    4. Andreas Hoy & Nils Feske & Petr Štěpánek & Petr Skalák & Andreas Schmitt & Petra Schneider, 2018. "Climatic Changes and Their Relation to Weather Types in a Transboundary Mountainous Region in Central Europe," Sustainability, MDPI, vol. 10(6), pages 1-30, June.
    5. Simon Schmidt & Christine Alewell & Katrin Meusburger, 2019. "Monthly RUSLE soil erosion risk of Swiss grasslands," Journal of Maps, Taylor & Francis Journals, vol. 15(2), pages 247-256, July.
    6. Siqi Zhang & Hui Chen & Yang Fu & Huihui Niu & Yi Yang & Boxiong Zhang, 2019. "Fractional Vegetation Cover Estimation of Different Vegetation Types in the Qaidam Basin," Sustainability, MDPI, vol. 11(3), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong, Jianfeng & Liu, Zhenxing & Zhang, Yong & Zheng, Xiujuan & Jin, Junyang, 2023. "Improved multi-gate mixture-of-experts framework for multi-step prediction of gas load," Energy, Elsevier, vol. 282(C).
    2. Asma Shaheen & Javed Iqbal, 2018. "Spatial Distribution and Mobility Assessment of Carcinogenic Heavy Metals in Soil Profiles Using Geostatistics and Random Forest, Boruta Algorithm," Sustainability, MDPI, vol. 10(3), pages 1-20, March.
    3. Ramón Ferri-García & María del Mar Rueda, 2022. "Variable selection in Propensity Score Adjustment to mitigate selection bias in online surveys," Statistical Papers, Springer, vol. 63(6), pages 1829-1881, December.
    4. Johannes Schmidt & Nik Usmar & Leon Westphal & Max Werner & Stephan Roller & Reinhard Rademacher & Peter Kühn & Lukas Werther & Aline Kottmann, 2023. "Erosion Modelling Indicates a Decrease in Erosion Susceptibility of Historic Ridge and Furrow Fields near Albershausen, Southern Germany," Land, MDPI, vol. 12(3), pages 1-11, February.
    5. Yvan Devaux & Lu Zhang & Andrew I. Lumley & Kanita Karaduzovic-Hadziabdic & Vincent Mooser & Simon Rousseau & Muhammad Shoaib & Venkata Satagopam & Muhamed Adilovic & Prashant Kumar Srivastava & Costa, 2024. "Development of a long noncoding RNA-based machine learning model to predict COVID-19 in-hospital mortality," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Ghosh, Indranil & Chaudhuri, Tamal Datta & Alfaro-Cortés, Esteban & Gámez, Matías & García, Noelia, 2022. "A hybrid approach to forecasting futures prices with simultaneous consideration of optimality in ensemble feature selection and advanced artificial intelligence," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    7. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    8. Sangjin Kim & Jong-Min Kim, 2019. "Two-Stage Classification with SIS Using a New Filter Ranking Method in High Throughput Data," Mathematics, MDPI, vol. 7(6), pages 1-16, May.
    9. Arjan S. Gosal & Janine A. McMahon & Katharine M. Bowgen & Catherine H. Hoppe & Guy Ziv, 2021. "Identifying and Mapping Groups of Protected Area Visitors by Environmental Awareness," Land, MDPI, vol. 10(6), pages 1-14, May.
    10. Zhao-Yue Chen & Hervé Petetin & Raúl Fernando Méndez Turrubiates & Hicham Achebak & Carlos Pérez García-Pando & Joan Ballester, 2024. "Population exposure to multiple air pollutants and its compound episodes in Europe," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Schrader, Silja & Graham, Sonia & Campbell, Rebecca & Height, Kaitlyn & Hawkes, Gina, 2024. "Grower attitudes and practices toward area-wide management of cropping weeds in Australia," Land Use Policy, Elsevier, vol. 137(C).
    12. Bram Janssens & Matthias Bogaert & Mathijs Maton, 2023. "Predicting the next Pogačar: a data analytical approach to detect young professional cycling talents," Annals of Operations Research, Springer, vol. 325(1), pages 557-588, June.
    13. Cooray, Upul & Watt, Richard G. & Tsakos, Georgios & Heilmann, Anja & Hariyama, Masanori & Yamamoto, Takafumi & Kuruppuarachchige, Isuruni & Kondo, Katsunori & Osaka, Ken & Aida, Jun, 2021. "Importance of socioeconomic factors in predicting tooth loss among older adults in Japan: Evidence from a machine learning analysis," Social Science & Medicine, Elsevier, vol. 291(C).
    14. Simon Besnard & Nuno Carvalhais & M Altaf Arain & Andrew Black & Benjamin Brede & Nina Buchmann & Jiquan Chen & Jan G P W Clevers & Loïc P Dutrieux & Fabian Gans & Martin Herold & Martin Jung & Yoshik, 2019. "Memory effects of climate and vegetation affecting net ecosystem CO2 fluxes in global forests," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-22, February.
    15. Francesco Sartor & Jonathan P. Moore & Hans-Peter Kubis, 2021. "Plasma Interleukin-10 and Cholesterol Levels May Inform about Interdependences between Fitness and Fatness in Healthy Individuals," IJERPH, MDPI, vol. 18(4), pages 1-19, February.
    16. Nawin Raj, 2022. "Prediction of Sea Level with Vertical Land Movement Correction Using Deep Learning," Mathematics, MDPI, vol. 10(23), pages 1-23, November.
    17. Piotr Pomorski & Denise Gorse, 2023. "Improving Portfolio Performance Using a Novel Method for Predicting Financial Regimes," Papers 2310.04536, arXiv.org.
    18. Caperna, Giulio & Colagrossi, Marco & Geraci, Andrea & Mazzarella, Gianluca, 2022. "A babel of web-searches: Googling unemployment during the pandemic," Labour Economics, Elsevier, vol. 74(C).
    19. Hakan Pabuccu & Adrian Barbu, 2023. "Feature Selection with Annealing for Forecasting Financial Time Series," Papers 2303.02223, arXiv.org, revised Feb 2024.
    20. Abolfazl Mollalo & Kiara M. Rivera & Behzad Vahedi, 2020. "Artificial Neural Network Modeling of Novel Coronavirus (COVID-19) Incidence Rates across the Continental United States," IJERPH, MDPI, vol. 17(12), pages 1-13, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:11:p:420-:d:437593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.