IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i2p343-d1586263.html
   My bibliography  Save this article

Cropland Loss Under Different Urban Expansion Patterns in China (1990–2020): Spatiotemporal Characteristics, Driving Factors, and Policy Implications

Author

Listed:
  • Chengrui Mao

    (Institute of Agricultural Economics and Information, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
    Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China)

  • Shanshan Feng

    (Institute of Agricultural Economics and Information, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
    Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China)

  • Canfang Zhou

    (Institute of Agricultural Economics and Information, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
    Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China)

Abstract

It is well established that China’s rapid urban expansion has led to a substantial loss of cropland. However, few studies have examined how different urban expansion patterns contribute to cropland consumption, which has hindered the formulation of sustainable urban development and cropland protection policies. To fill this gap, we analyzed the occupation of cropland under three urban expansion patterns (leap-frogging, edge-spreading, and interior filling) in China from 1990 to 2020, using long-term land use data. The dominant driving forces of cropland loss were then explored using the XGBoost model and SHAP values. Our findings indicate that urban expansion in China from 1990 to 2020 resulted in a 6.3% reduction in cropland, with edge-spreading (4.0%) contributing the most, followed by leap-frogging (2.1%) and interior filling (0.2%). Change in urban intensity (CUI) proved to be the most critical driver of cropland loss, with SHAP values of 0.38, 0.28, and 0.37 for edge-spreading, leap-frogging, and interior filling, respectively. Over time, the driving forces evolved from a single demographic-economic dominance to a more diversified and integrated set of drivers. Based on these findings, we propose tailored planning and policies for different urban expansion patterns; for regions dominated by edge-spreading, stricter controls on urban boundaries and stronger land use planning constraints are required. For regions with prominent interior filling expansion, efforts should be made to improve internal land use efficiency while preserving existing cropland spaces. In regions characterized by leap-frogging expansion, further optimization of construction land allocation is needed to reduce the occupation of productive suburban cropland. These findings not only offer new empirical evidence for understanding the interplay between urban expansion and cropland conservation but also provide transferable insights that can inform sustainable land-use planning and cropland protection strategies in other rapidly urbanizing regions facing similar challenges.

Suggested Citation

  • Chengrui Mao & Shanshan Feng & Canfang Zhou, 2025. "Cropland Loss Under Different Urban Expansion Patterns in China (1990–2020): Spatiotemporal Characteristics, Driving Factors, and Policy Implications," Land, MDPI, vol. 14(2), pages 1-18, February.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:2:p:343-:d:1586263
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/2/343/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/2/343/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meng, Liting & Sun, Yan & Zhao, Shuqing, 2020. "Comparing the spatial and temporal dynamics of urban expansion in Guangzhou and Shenzhen from 1975 to 2015: A case study of pioneer cities in China’s rapid urbanization," Land Use Policy, Elsevier, vol. 97(C).
    2. Ziyang Yu & Zhenzhen Li & Haoxuan Yang & Yihao Wang & Yang Cui & Guoping Lei & Shuai Ye, 2023. "Contrasting responses of spatiotemporal patterns of cropland to climate change in Northeast China," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 15(5), pages 1197-1214, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao Wu & Peipei Zha & Mengjie Yu & Guojun Jiang & Jianzhen Zhang & Qinglong You & Xuefeng Xie, 2021. "Landscape Pattern Evolution and Its Response to Human Disturbance in a Newly Metropolitan Area: A Case Study in Jin-Yi Metropolitan Area," Land, MDPI, vol. 10(8), pages 1-18, July.
    2. Yangbing Miao & Jiajie Liu & Raymond Yu Wang, 2021. "Occupation of Cultivated Land for Urban–Rural Expansion in China: Evidence from National Land Survey 1996–2006," Land, MDPI, vol. 10(12), pages 1-18, December.
    3. Huang, Xinxin & Wang, Haijun & Xiao, Fentao, 2022. "Simulating urban growth affected by national and regional land use policies: Case study from Wuhan, China," Land Use Policy, Elsevier, vol. 112(C).
    4. Yang, Chen & Zhao, Shuqing, 2022. "Urban vertical profiles of three most urbanized Chinese cities and the spatial coupling with horizontal urban expansion," Land Use Policy, Elsevier, vol. 113(C).
    5. Yin, Chenglong & Meng, Fei & Yang, Xinyue & Yang, Fengshuo & Fu, Pingjie & Yao, Guobiao & Chen, Ruishan, 2022. "Spatio-temporal evolution of urban built-up areas and analysis of driving factors —A comparison of typical cities in north and south China," Land Use Policy, Elsevier, vol. 117(C).
    6. Shanshan Jia & Peiyao Li & Wenxiao Jia & Xiaorui Chen, 2025. "Rates and Patterns of Town Expansion in China’s 17 Shrinking Tourism-Type Counties," Land, MDPI, vol. 14(2), pages 1-19, February.
    7. Huan Lu & Ruiyang Wang & Rong Ye & Jinzhao Fan, 2023. "Monitoring Long-Term Spatiotemporal Dynamics of Urban Expansion Using Multisource Remote Sensing Images and Historical Maps: A Case Study of Hangzhou, China," Land, MDPI, vol. 12(1), pages 1-23, January.
    8. Yu Li & Haipeng Ye & Xu Sun & Ji Zheng & Dan Meng, 2021. "Coupling Analysis of the Thermal Landscape and Environmental Carrying Capacity of Urban Expansion in Beijing (China) over the Past 35 Years," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    9. Liu, Guilin & Li, Jingyun & Nie, Peng, 2022. "Tracking the history of urban expansion in Guangzhou (China) during 1665–2017: Evidence from historical maps and remote sensing images," Land Use Policy, Elsevier, vol. 112(C).
    10. Bochuan Zhao & Yifei Wang & Huizhi Geng & Xuan Jiang & Lingyue Li, 2024. "Spatial Expansion Characteristics and Nonlinear Relationships of Driving Factors in Urban Agglomerations: A Case Study of the Yangtze River Delta Urban Agglomeration in China," Land, MDPI, vol. 13(11), pages 1-22, November.
    11. Ai, Bin & Xie, Dixiang & Ma, Shifa & Jiang, Haiyan, 2022. "An EasyCA model with few steady variables and clone stamp strategy for simulation of urban growth in metropolitan areas," Ecological Modelling, Elsevier, vol. 468(C).
    12. Ren Yang & Baoqing Qin & Yuancheng Lin, 2021. "Assessment of the Impact of Land Use Change on Spatial Differentiation of Landscape and Ecosystem Service Values in the Case of Study the Pearl River Delta in China," Land, MDPI, vol. 10(11), pages 1-16, November.
    13. Chenmingyang Jiang & Xinyu Du & Jun Cai & Hao Li & Qibing Chen, 2024. "Study on the Evolution and Prediction of Land Use and Landscape Patterns in the Jianmen Shu Road Heritage Area," Land, MDPI, vol. 13(12), pages 1-22, December.
    14. Yong Lai & Guangqing Huang & Shengzhong Chen & Shaotao Lin & Wenjun Lin & Jixin Lyu, 2021. "Land Use Dynamics and Optimization from 2000 to 2020 in East Guangdong Province, China," Sustainability, MDPI, vol. 13(6), pages 1-24, March.
    15. Yu Han & Chaoyue Yu & Zhe Feng & Hanchu Du & Caisi Huang & Kening Wu, 2021. "Construction and Optimization of Ecological Security Pattern Based on Spatial Syntax Classification—Taking Ningbo, China, as an Example," Land, MDPI, vol. 10(4), pages 1-16, April.
    16. Caige Sun & Shengyong Zhang & Chuncheng Song & Jianhui Xu & Fenglei Fan, 2021. "Investigation of Dynamic Coupling Coordination between Urbanization and the Eco-Environment—A Case Study in the Pearl River Delta Area," Land, MDPI, vol. 10(2), pages 1-17, February.
    17. Tang, Feng & Wang, Li & Guo, Yiqiang & Fu, Meichen & Huang, Ni & Duan, Wensheng & Luo, Ming & Zhang, Jianjun & Li, Wang & Song, Wei, 2022. "Spatio-temporal variation and coupling coordination relationship between urbanisation and habitat quality in the Grand Canal, China," Land Use Policy, Elsevier, vol. 117(C).
    18. Andrzej Biłozor & Iwona Cieślak, 2021. "Review of Experience in Recent Studies on the Dynamics of Land Urbanisation," Land, MDPI, vol. 10(11), pages 1-27, October.
    19. Buonocore, Ciro & Carlucci, Fabio & Ciciarelli, Lucia & Papola, Andrea & Tinessa, Fiore & Tocchi, Daniela & Trincone, Barbara, 2023. "Accessibility analysis in spatial planning: A case of special economic zones (SEZs) in Campania, Southern Italy," Land Use Policy, Elsevier, vol. 132(C).
    20. Xin Ye & Wenhui Yu & Lina Lv & Shuying Zang & Hongwei Ni, 2021. "An Improved Case-Based Reasoning Model for Simulating Urban Growth," Sustainability, MDPI, vol. 13(11), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:2:p:343-:d:1586263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.