IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i12p2165-d1542430.html
   My bibliography  Save this article

Study on the Evolution and Prediction of Land Use and Landscape Patterns in the Jianmen Shu Road Heritage Area

Author

Listed:
  • Chenmingyang Jiang

    (College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China)

  • Xinyu Du

    (College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China)

  • Jun Cai

    (College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China)

  • Hao Li

    (College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China)

  • Qibing Chen

    (College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China)

Abstract

Land utilization—a crucial resource for human survival and development—reflects the outcomes of intricate interactions between human communities and their respective environments. The Jianmen Shu Road Heritage Area presents both opportunities and challenges in terms of protection and development. Any alterations in its land use and landscape patterns directly impact the sustainable development of the regional environment and heritage sites. In this study, we considered three cities along the Jianmen Shu Road, analyzed the evolution characteristics of land use and landscape patterns from 2012 to 2022, and used the multi-criteria evaluation–cellular automata-Markov (MCE-CA-Markov) model to predict the land use and landscape patterns in 2027. The results show the following: (1) From 2012 to 2022, forest land was at its greatest extent, the growth rate of forest land increased, the loss rate of cropland increased, and impervious land continued to expand. (2) From 2012 to 2022, the degrees of fragmentation in cropland, impervious land, and grassland increased; water area had the highest connectivity; forest land had the lowest connectivity; and barren land had the highest degree of separation. The degree of fragmentation and connectivity of the landscape patterns decreased, the degree of complexity increased, and landscape diversity increased and gradually stabilized. (3) Predictions for 2022–2027 indicate that forest land, impervious land, grassland, and barren land will increase, whereas cropland and the water area will decrease. The growth rate of grassland will increase, the loss rates of cropland and water area will decrease, and the growth rates of impervious land and forest land will decrease. (4) Further predictions for 2022–2027 indicate that the density and complexity of the grassland edge will decrease, whereas the fragmentation and complexity of the remaining patches will increase. The degree of fragmentation, complexity, connectivity, and separation of landscape patterns will increase significantly, whereas landscape diversity will remain stable. This study deepens our understanding of how land use and landscape patterns change in the heritage area from a long-term perspective that involves both the past and future. Such research can provide crucial information for tourism management, heritage protection, and spatial planning in the heritage area and, thus, has important management implications for the study area and similar heritage areas in other regions.

Suggested Citation

  • Chenmingyang Jiang & Xinyu Du & Jun Cai & Hao Li & Qibing Chen, 2024. "Study on the Evolution and Prediction of Land Use and Landscape Patterns in the Jianmen Shu Road Heritage Area," Land, MDPI, vol. 13(12), pages 1-22, December.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:12:p:2165-:d:1542430
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/12/2165/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/12/2165/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xuan Guo & Qingwen Min, 2023. "Analysis of Landscape Patterns Changes and Driving Factors of the Guangdong Chaoan Fenghuangdancong Tea Cultural System in China," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    2. Dong Chen & Kangning Xiong & Juan Zhang, 2022. "Progress on the Integrity Protection in the Natural World Heritage Site and Agroforestry Development in the Buffer Zone: An Implications for the World Heritage Karst," IJERPH, MDPI, vol. 19(24), pages 1-18, December.
    3. Markos Mathewos & Semaria Moga Lencha & Misgena Tsegaye, 2022. "Land Use and Land Cover Change Assessment and Future Predictions in the Matenchose Watershed, Rift Valley Basin, Using CA-Markov Simulation," Land, MDPI, vol. 11(10), pages 1-28, September.
    4. Ning He & Wenxian Guo & Hongxiang Wang & Long Yu & Siyuan Cheng & Lintong Huang & Xuyang Jiao & Wenxiong Chen & Haotong Zhou, 2023. "Temporal and Spatial Variations in Landscape Habitat Quality under Multiple Land-Use/Land-Cover Scenarios Based on the PLUS-InVEST Model in the Yangtze River Basin, China," Land, MDPI, vol. 12(7), pages 1-19, July.
    5. Guan, DongJie & Li, HaiFeng & Inohae, Takuro & Su, Weici & Nagaie, Tadashi & Hokao, Kazunori, 2011. "Modeling urban land use change by the integration of cellular automaton and Markov model," Ecological Modelling, Elsevier, vol. 222(20), pages 3761-3772.
    6. Bakhtiar Feizizadeh & Thomas Blaschke, 2013. "Land suitability analysis for Tabriz County, Iran: a multi-criteria evaluation approach using GIS," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 56(1), pages 1-23, January.
    7. Lausch, Angela & Blaschke, Thomas & Haase, Dagmar & Herzog, Felix & Syrbe, Ralf-Uwe & Tischendorf, Lutz & Walz, Ulrich, 2015. "Understanding and quantifying landscape structure – A review on relevant process characteristics, data models and landscape metrics," Ecological Modelling, Elsevier, vol. 295(C), pages 31-41.
    8. Meng, Liting & Sun, Yan & Zhao, Shuqing, 2020. "Comparing the spatial and temporal dynamics of urban expansion in Guangzhou and Shenzhen from 1975 to 2015: A case study of pioneer cities in China’s rapid urbanization," Land Use Policy, Elsevier, vol. 97(C).
    9. Yang, Xin & Zheng, Xin-Qi & Chen, Rui, 2014. "A land use change model: Integrating landscape pattern indexes and Markov-CA," Ecological Modelling, Elsevier, vol. 283(C), pages 1-7.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Yu & Jia, Haifeng, 2017. "Simulating the spatial dynamics of urban growth with an integrated modeling approach: A case study of Foshan, China," Ecological Modelling, Elsevier, vol. 353(C), pages 107-116.
    2. Yanan Li & Linghua Duo & Ming Zhang & Zhenhua Wu & Yanjun Guan, 2021. "Assessment and Estimation of the Spatial and Temporal Evolution of Landscape Patterns and Their Impact on Habitat Quality in Nanchang, China," Land, MDPI, vol. 10(10), pages 1-19, October.
    3. Eshetu Yirsaw & Wei Wu & Xiaoping Shi & Habtamu Temesgen & Belew Bekele, 2017. "Land Use/Land Cover Change Modeling and the Prediction of Subsequent Changes in Ecosystem Service Values in a Coastal Area of China, the Su-Xi-Chang Region," Sustainability, MDPI, vol. 9(7), pages 1-17, July.
    4. Mustafa, Ahmed & Cools, Mario & Saadi, Ismaïl & Teller, Jacques, 2017. "Coupling agent-based, cellular automata and logistic regression into a hybrid urban expansion model (HUEM)," Land Use Policy, Elsevier, vol. 69(C), pages 529-540.
    5. Selamawit Haftu Gebresellase & Zhiyong Wu & Huating Xu & Wada Idris Muhammad, 2023. "Scenario-Based LULC Dynamics Projection Using the CA–Markov Model on Upper Awash Basin (UAB), Ethiopia," Sustainability, MDPI, vol. 15(2), pages 1-27, January.
    6. Rui Zhou & Hao Zhang & Xin-Yue Ye & Xin-Jun Wang & Hai-Long Su, 2016. "The Delimitation of Urban Growth Boundaries Using the CLUE-S Land-Use Change Model: Study on Xinzhuang Town, Changshu City, China," Sustainability, MDPI, vol. 8(11), pages 1-16, November.
    7. Shuqing Wang & Xinqi Zheng, 2023. "Dominant transition probability: combining CA-Markov model to simulate land use change," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6829-6847, July.
    8. Yiting Zuo & Jie Cheng & Meichen Fu, 2022. "Analysis of Land Use Change and the Role of Policy Dimensions in Ecologically Complex Areas: A Case Study in Chongqing," Land, MDPI, vol. 11(5), pages 1-27, April.
    9. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    10. Aibo Jin & Gachen Zhang & Ping Ma & Xiangrong Wang, 2024. "Ecosystem Services Trade-Offs in the Chaohu Lake Basin Based on Land-Use Scenario Simulations," Land, MDPI, vol. 13(12), pages 1-29, December.
    11. Abdelmonaim Okacha & Adil Salhi & Kamal Abdelrahman & Hamid Fattasse & Kamal Lahrichi & Kaoutar Bakhouya & Biraj Kanti Mondal, 2024. "Balancing Environmental and Human Needs: Geographic Information System-Based Analytical Hierarchy Process Land Suitability Planning for Emerging Urban Areas in Bni Bouayach Amid Urban Transformation," Sustainability, MDPI, vol. 16(15), pages 1-24, July.
    12. Katarzyna Kocur-Bera & Anna Lyjak, 2021. "Analysis of Changes in Agricultural Use of Land After Poland’s Accession to the EU," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 517-533.
    13. Tao Wu & Peipei Zha & Mengjie Yu & Guojun Jiang & Jianzhen Zhang & Qinglong You & Xuefeng Xie, 2021. "Landscape Pattern Evolution and Its Response to Human Disturbance in a Newly Metropolitan Area: A Case Study in Jin-Yi Metropolitan Area," Land, MDPI, vol. 10(8), pages 1-18, July.
    14. Michel Opelele Omeno & Ying Yu & Wenyi Fan & Tolerant Lubalega & Chen Chen & Claude Kachaka Sudi Kaiko, 2021. "Analysis of the Impact of Land-Use/Land-Cover Change on Land-Surface Temperature in the Villages within the Luki Biosphere Reserve," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    15. Šťastná Milada & Vaishar Antonín & Vavrouchová Hana & Ševelová Miloslava & Kozlovská Silvie & Doskočilová Veronika & Lincová Helena, 2015. "Changes Of A Rural Landscape In Czech Areas Of Different Types," European Countryside, Sciendo, vol. 7(2), pages 111-133, June.
    16. Ustaoglu, E. & Sisman, S. & Aydınoglu, A.C., 2021. "Determining agricultural suitable land in peri-urban geography using GIS and Multi Criteria Decision Analysis (MCDA) techniques," Ecological Modelling, Elsevier, vol. 455(C).
    17. Jing Yang & Feng Shi & Yizhong Sun & Jie Zhu, 2019. "A Cellular Automata Model Constrained by Spatiotemporal Heterogeneity of the Urban Development Strategy for Simulating Land-use Change: A Case Study in Nanjing City, China," Sustainability, MDPI, vol. 11(15), pages 1-19, July.
    18. Li, Sheng & Nadolnyak, Denis & Hartarska, Valentina, 2019. "Agricultural land conversion: Impacts of economic and natural risk factors in a coastal area," Land Use Policy, Elsevier, vol. 80(C), pages 380-390.
    19. Yusuyunjiang Mamitimin & Zibibula Simayi & Ayinuer Mamat & Bumairiyemu Maimaiti & Yunfei Ma, 2023. "FLUS Based Modeling of the Urban LULC in Arid and Semi-Arid Region of Northwest China: A Case Study of Urumqi City," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
    20. Sarah Hasan & Wenzhong Shi & Xiaolin Zhu & Sawaid Abbas & Hafiz Usman Ahmed Khan, 2020. "Future Simulation of Land Use Changes in Rapidly Urbanizing South China Based on Land Change Modeler and Remote Sensing Data," Sustainability, MDPI, vol. 12(11), pages 1-24, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:12:p:2165-:d:1542430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.