IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i2p270-d1578755.html
   My bibliography  Save this article

Estimation of Carbon Density in Different Urban Green Spaces: Taking the Beijing Main District as an Example

Author

Listed:
  • Yilun Cao

    (School of Architecture, Southeast University, Nanjing 210018, China)

  • Xinwei He

    (The Bartlett School of Architecture, University College London, London WC1E 6BT, UK)

  • Chang Wang

    (School of Landscape Architecture, Beijing Forestry University, Beijing 100091, China)

  • Yuhao Fang

    (School of Architecture, Southeast University, Nanjing 210018, China)

Abstract

Urban green spaces (UGS) are crucial urban elements that serve as direct carbon sequestration and contribute to indirect carbon emission reduction. Accurately calculating the carbon density of urban green spaces allows for scientific planning and design, thereby advancing efforts toward achieving carbon neutrality. This study has developed a workflow for estimating carbon density in urban green spaces through point cloud measurements and model simulations, using the UGS in the Beijing Main District as a case study. From the sample level, a calculation methodology was constructed based on the point cloud technology-model simulation method, which can obtain the carbon density at the plant level and the sample level. At the UGS level, remote sensing inversion was utilized to map the carbon density of urban green spaces. Ultimately, the research calculated and compared carbon density at different scales, including the carbon density of individual plants, the carbon density of sample plots, and the carbon density of various types of urban green spaces. It was found that the carbon density of trees in UGS was 9.87 kg/m 2 , while those of shrubs and herbaceous plants were 13.20 kg/m 2 and 0.11 kg/m 2 . In urban green spaces, the carbon densities of the tree and herb layers were slightly lower than those in natural ecosystems, whereas the carbon density of the shrub layer was significantly higher. This highlights the substantial potential and value of shrubs in carbon sequestration and carbon storage. The average carbon density of all UGS types was 9.76 kg/m 2 , with the following descending order: Neighborhood Parks (10.31 kg/m 2 ) > Attached Green Spaces (7.22 kg/m 2 ) > Regional Parks (5.75 kg/m 2 ). Based on these findings, the study proposed optimization strategies for different UGS types, focusing on high carbon-density plant community optimization. The goal is to provide a theoretical foundation for carbon storage calculations and plant arrangements in future UGS construction.

Suggested Citation

  • Yilun Cao & Xinwei He & Chang Wang & Yuhao Fang, 2025. "Estimation of Carbon Density in Different Urban Green Spaces: Taking the Beijing Main District as an Example," Land, MDPI, vol. 14(2), pages 1-31, January.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:2:p:270-:d:1578755
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/2/270/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/2/270/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tol, Richard S. J., 2005. "The marginal damage costs of carbon dioxide emissions: an assessment of the uncertainties," Energy Policy, Elsevier, vol. 33(16), pages 2064-2074, November.
    2. Qiao, Renlu & Liu, Xiaochang & Gao, Shuo & Liang, Diling & GesangYangji, Gesang & Xia, Li & Zhou, Shiqi & Ao, Xiang & Jiang, Qingrui & Wu, Zhiqiang, 2024. "Industrialization, urbanization, and innovation: Nonlinear drivers of carbon emissions in Chinese cities," Applied Energy, Elsevier, vol. 358(C).
    3. Shuaijun Yue & Guangxing Ji & Weiqiang Chen & Junchang Huang & Yulong Guo & Mingyue Cheng, 2023. "Spatial and Temporal Variability Characteristics of Future Carbon Stocks in Anhui Province under Different SSP Scenarios Based on PLUS and InVEST Models," Land, MDPI, vol. 12(9), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pycroft, Jonathan & Vergano, Lucia & Hope, Chris & Paci, Daniele & Ciscar, Juan Carlos, 2011. "A tale of tails: Uncertainty and the social cost of carbon dioxide," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 5, pages 1-29.
    2. Liu, Xuewei & Yuan, Zengwei & Xu, Yuan & Jiang, Songyan, 2017. "Greening cement in China: A cost-effective roadmap," Applied Energy, Elsevier, vol. 189(C), pages 233-244.
    3. Söderholm, Patrik & Pettersson, Fredrik, 2008. "Climate policy and the social cost of power generation: Impacts of the Swedish national emissions target," Energy Policy, Elsevier, vol. 36(11), pages 4154-4158, November.
    4. Steve Newbold & Charles Griffiths & Christopher C. Moore & Ann Wolverton & Elizabeth Kopits, 2010. "The "Social Cost of Carbon" Made Simple," NCEE Working Paper Series 201007, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Aug 2010.
    5. Wenbin Wang & Mark E. Ferguson & Shanshan Hu & Gilvan C. Souza, 2013. "Dynamic Capacity Investment with Two Competing Technologies," Manufacturing & Service Operations Management, INFORMS, vol. 15(4), pages 616-629, October.
    6. Figge, Frank & Hahn, Tobias & Barkemeyer, Ralf, 2014. "The If, How and Where of assessing sustainable resource use," Ecological Economics, Elsevier, vol. 105(C), pages 274-283.
    7. Chen, Lu & Li, Xin & Liu, Wei & Kang, Xinyu & Zhao, Yifei & Wang, Minxi, 2024. "System dynamics-multiple the objective optimization model for the coordinated development of urban economy-energy-carbon system," Applied Energy, Elsevier, vol. 371(C).
    8. Raitzer, David A., 2010. "Assessing the Impact of Policy-Oriented Research: The Case of CIFOR's Influence on the Indonesian Pulp and Paper Sector," World Development, Elsevier, vol. 38(10), pages 1506-1518, October.
    9. Runst, Petrik & Höhle, David, 2022. "The German eco tax and its impact on CO2 emissions," Energy Policy, Elsevier, vol. 160(C).
    10. Tol, Richard S.J., 2012. "A cost–benefit analysis of the EU 20/20/2020 package," Energy Policy, Elsevier, vol. 49(C), pages 288-295.
    11. Liang, Chao & Xia, Zhenglan & Lai, Xiaodong & Wang, Lu, 2022. "Natural gas volatility prediction: Fresh evidence from extreme weather and extended GARCH-MIDAS-ES model," Energy Economics, Elsevier, vol. 116(C).
    12. Zhou, Peng & Poh, Kim Leng & Ang, Beng Wah, 2007. "A non-radial DEA approach to measuring environmental performance," European Journal of Operational Research, Elsevier, vol. 178(1), pages 1-9, April.
    13. Attahiru, Yusuf Babangida & Aziz, Md. Maniruzzaman A. & Kassim, Khairul Anuar & Shahid, Shamsuddin & Wan Abu Bakar, Wan Azelee & NSashruddin, Thanwa Filza & Rahman, Farahiyah Abdul & Ahamed, Mohd Imra, 2019. "A review on green economy and development of green roads and highways using carbon neutral materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 600-613.
    14. Yohe, Gary W. & Tol, Richard S. J. & Anthoff, David, 2009. "Discounting for Climate Change," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-22.
    15. Nordhaus, William, 2013. "Integrated Economic and Climate Modeling," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 1069-1131, Elsevier.
    16. Pezzey, John C.V. & Burke, Paul J., 2014. "Towards a more inclusive and precautionary indicator of global sustainability," Ecological Economics, Elsevier, vol. 106(C), pages 141-154.
    17. Ian W.H. Parry, 2009. "Pricing Urban Congestion," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 461-484, September.
    18. Kazushi Hatase & Shunsuke Managi, 2015. "Increase in carbon prices: analysis of energy-economy modeling," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(2), pages 241-262, April.
    19. Koji Tokimatsu & Louis Dupuy & Nick Hanley, 2019. "Using Genuine Savings for Climate Policy Evaluation with an Integrated Assessment Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 281-307, January.
    20. Castells-Quintana, David & Dienesch, Elisa & Krause, Melanie, 2021. "Air pollution in an urban world: A global view on density, cities and emissions," Ecological Economics, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:2:p:270-:d:1578755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.