IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2024i1p23-d1553730.html
   My bibliography  Save this article

Habitat Distributions and Abundance of Four Wild Herbivores on the Qinghai–Tibetan Plateau: A Review

Author

Listed:
  • Tian Qiao

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100049, China)

  • Chiwei Xiao

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100049, China)

  • Zhiming Feng

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100049, China)

  • Junzhi Ye

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100049, China)

Abstract

Understanding the change in the habitat distributions and abundance of wildlife in space and time is critical for the conservation of biodiversity and mitigate human–wildlife conflicts (HWCs). Tibetan antelope or chiru ( Pantholops hodgsonii ), Tibetan gazelle or goa ( Procapra picticaudata ), Tibetan wild ass or kiang ( Equus kiang ), and Wild yak ( Bos mutus ) have been sympatric on the Qinghai–Tibetan plateau (QTP) for numerous generations. However, reviews on the habitat distributions and abundance of these four wild herbivores (WHs), as well as the methods examining the changes in these aspects, are still lacking. Here, we firstly review the distributions and abundance of four major WHs on the QTP across different periods, examining the underlying causes of changes and HWCs. Furthermore, we critically compare three aspects of methods: transect surveys, machine learning (ML), and deep learning (DL) methods of studying WHs. The results show that since the 1990s, the distributions and abundance of WHs have exhibited a trend of initial decline followed by recovery, largely attributed to global climate warming and a decrease in illegal hunting. However, in recent years, the primary challenge has shifted from wildlife protection to balancing the human and wildlife interests within the constraints of limited resources. In the future, we should focus on enhancing the ecological functions of habitats to achieve harmonious coexistence between humans and nature, as well as establishing a scientific compensation mechanism to mitigate human–wildlife conflicts. In order to accurately calculate the changes, we should select appropriate models to analyze the habitats of wildlife based on their specific characteristics and the environmental conditions. Additionally, with the advancement of large models, AI (artificial intelligence) should be utilized for precise and rapid wildlife conservation. The findings of this study also provide guidance and reference for addressing the issues related to wildlife habitats and abundance in other regions globally.

Suggested Citation

  • Tian Qiao & Chiwei Xiao & Zhiming Feng & Junzhi Ye, 2024. "Habitat Distributions and Abundance of Four Wild Herbivores on the Qinghai–Tibetan Plateau: A Review," Land, MDPI, vol. 14(1), pages 1-24, December.
  • Handle: RePEc:gam:jlands:v:14:y:2024:i:1:p:23-:d:1553730
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/1/23/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/1/23/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chris D. Thomas & Alison Cameron & Rhys E. Green & Michel Bakkenes & Linda J. Beaumont & Yvonne C. Collingham & Barend F. N. Erasmus & Marinez Ferreira de Siqueira & Alan Grainger & Lee Hannah & Lesle, 2004. "Extinction risk from climate change," Nature, Nature, vol. 427(6970), pages 145-148, January.
    2. Dan Liang & Xingli Giam & Sifan Hu & Liang Ma & David S. Wilcove, 2023. "Assessing the illegal hunting of native wildlife in China," Nature, Nature, vol. 623(7985), pages 100-105, November.
    3. Yefei Liu & Gui Meng & Shuirong Wu & Xufeng Zhang & Chengle Zhao & Hongguo Yang, 2022. "Influencing Factors and Measurement of “Willingness to Accept” Living with Alligators in a Nature Reserve: A Case Study in National Chinese Alligator Nature Reserve, China," Land, MDPI, vol. 11(10), pages 1-16, October.
    4. Gao, Hongmei & Jiang, Feng & Chi, Xiangwen & Li, Guangying & Cai, Zhenyuan & Qin, Wen & Zhang, Jingjie & Wu, Tong & Zhang, Tongzuo, 2020. "The carrying pressure of livestock is higher than that of large wild herbivores in Yellow River source area, China," Ecological Modelling, Elsevier, vol. 431(C).
    5. Shengwang Bao & Fan Yang, 2024. "Identification of Potential Habitats and Adjustment of Protected Area Boundaries for Large Wild Herbivores in the Yellow-River-Source National Park, China," Land, MDPI, vol. 13(2), pages 1-19, February.
    6. Yiwei Lian & Yang Bai & Zhongde Huang & Maroof Ali & Jie Wang & Haoran Chen, 2024. "Spatio-Temporal Changes and Habitats of Rare and Endangered Species in Yunnan Province Based on MaxEnt Model," Land, MDPI, vol. 13(2), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    2. Chunrong Mi & Liang Ma & Mengyuan Yang & Xinhai Li & Shai Meiri & Uri Roll & Oleksandra Oskyrko & Daniel Pincheira-Donoso & Lilly P. Harvey & Daniel Jablonski & Barbod Safaei-Mahroo & Hanyeh Ghaffari , 2023. "Global Protected Areas as refuges for amphibians and reptiles under climate change," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    4. Pearce, Joshua M. & Johnson, Sara J. & Grant, Gabriel B., 2007. "3D-mapping optimization of embodied energy of transportation," Resources, Conservation & Recycling, Elsevier, vol. 51(2), pages 435-453.
    5. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.
    6. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    7. John H Matthews & Bart AJ Wickel & Sarah Freeman, 2011. "Converging Currents in Climate-Relevant Conservation: Water, Infrastructure, and Institutions," PLOS Biology, Public Library of Science, vol. 9(9), pages 1-4, September.
    8. Brandt, Laura A. & Benscoter, Allison M. & Harvey, Rebecca & Speroterra, Carolina & Bucklin, David & Romañach, Stephanie S. & Watling, James I. & Mazzotti, Frank J., 2017. "Comparison of climate envelope models developed using expert-selected variables versus statistical selection," Ecological Modelling, Elsevier, vol. 345(C), pages 10-20.
    9. Ethan Gordon & Federico Davila & Chris Riedy, 2022. "Transforming landscapes and mindscapes through regenerative agriculture," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(2), pages 809-826, June.
    10. Rennels, Lisa & Rennert, Kevin & Errickson, Frank & Anthoff, David & Wingenroth, Jordan & Prest, Brian C., 2024. "Accounting for Biodiversity Loss Raises the Social Cost of CO2," RFF Working Paper Series 24-23, Resources for the Future.
    11. Jorge Velásquez-Tibatá & María H Olaya-Rodríguez & Daniel López-Lozano & César Gutiérrez & Iván González & María C Londoño-Murcia, 2019. "BioModelos: A collaborative online system to map species distributions," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-13, March.
    12. Tasmin L. Rymer & Neville Pillay & Carsten Schradin, 2013. "Extinction or Survival? Behavioral Flexibility in Response to Environmental Change in the African Striped Mouse Rhabdomys," Sustainability, MDPI, vol. 5(1), pages 1-24, January.
    13. Feng, Zhiying & Tang, Wenhu & Niu, Zhewen & Wu, Qinghua, 2018. "Bi-level allocation of carbon emission permits based on clustering analysis and weighted voting: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1122-1135.
    14. Alexander S Anderson & Collin J Storlie & Luke P Shoo & Richard G Pearson & Stephen E Williams, 2013. "Current Analogues of Future Climate Indicate the Likely Response of a Sensitive Montane Tropical Avifauna to a Warming World," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-12, July.
    15. Di Traglia, Mario & Attorre, Fabio & Francesconi, Fabio & Valenti, Roberto & Vitale, Marcello, 2011. "Is cellular automata algorithm able to predict the future dynamical shifts of tree species in Italy under climate change scenarios? A methodological approach," Ecological Modelling, Elsevier, vol. 222(4), pages 925-934.
    16. Liu, Zhu & Feng, Kuishuang & Hubacek, Klaus & Liang, Sai & Anadon, Laura Diaz & Zhang, Chao & Guan, Dabo, 2015. "Four system boundaries for carbon accounts," Ecological Modelling, Elsevier, vol. 318(C), pages 118-125.
    17. Pingping Tian & Yifu Liu & Mingzhen Sui & Jing Ou, 2022. "Prediction of Potential Habitats of Zanthoxylum armatum DC. and Their Changes under Climate Change," Sustainability, MDPI, vol. 14(19), pages 1-14, September.
    18. Rougier, Thibaud & Drouineau, Hilaire & Dumoulin, Nicolas & Faure, Thierry & Deffuant, Guillaume & Rochard, Eric & Lambert, Patrick, 2014. "The GR3D model, a tool to explore the Global Repositioning Dynamics of Diadromous fish Distribution," Ecological Modelling, Elsevier, vol. 283(C), pages 31-44.
    19. Verboom, Jana & Alkemade, Rob & Klijn, Jan & Metzger, Marc J. & Reijnen, Rien, 2007. "Combining biodiversity modeling with political and economic development scenarios for 25 EU countries," Ecological Economics, Elsevier, vol. 62(2), pages 267-276, April.
    20. Perez, Carlos & Roncoli, Carla & Neely, Constance & Steiner, Jean L., 2007. "Can carbon sequestration markets benefit low-income producers in semi-arid Africa? Potentials and challenges," Agricultural Systems, Elsevier, vol. 94(1), pages 2-12, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2024:i:1:p:23-:d:1553730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.