IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i9p1518-d1480787.html
   My bibliography  Save this article

Multi-Scenario Simulation of Land-Use/Land-Cover Changes and Carbon Storage Prediction Coupled with the SD-PLUS-InVEST Model: A Case Study of the Tuojiang River Basin, China

Author

Listed:
  • Qi Wang

    (College of Resources, Sichuan Agricultural University, Chengdu 611130, China
    These authors contributed equally to this work.)

  • Wenying Zhang

    (College of Resources, Sichuan Agricultural University, Chengdu 611130, China
    These authors contributed equally to this work.)

  • Jianguo Xia

    (College of Resources, Sichuan Agricultural University, Chengdu 611130, China)

  • Dinghua Ou

    (College of Resources, Sichuan Agricultural University, Chengdu 611130, China
    Key Laboratory of Investigation, Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu 610045, China)

  • Zhaonan Tian

    (College of Resources, Sichuan Agricultural University, Chengdu 611130, China)

  • Xuesong Gao

    (College of Resources, Sichuan Agricultural University, Chengdu 611130, China
    Key Laboratory of Investigation, Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu 610045, China)

Abstract

Land-use and land-cover changes (LUCCs) significantly impact carbon sequestration by modifying the structure and function of terrestrial ecosystems. This study utilized GIS and remote sensing techniques to forecast future LUCC patterns and their influence on regional carbon budgets, which is essential for sustainable development. We devised a coupled system dynamics (SD) model integrated with a patch-generating land-use simulation (PLUS) model to simulate LUCCs under diverse future scenarios using multisource environmental data. Additionally, the InVEST model was employed to quantify carbon storage in terrestrial ecosystems. By establishing three scenarios—ecological priority (EP), highly urbanized (HU), and coordinated development (CD)—this study’s aim was to predict the LUCC patterns and carbon storage distribution of the Tuojiang River Basin (TRB), China, up to 2035. The results showed that (1) from 2000 to 2020, significant LUCCs occurred in the TRB, primarily involving the conversion of cultivated land into construction areas and forestland; (2) LUCCs had a substantial impact on carbon storage in the TRB, with the EP scenario demonstrating the highest carbon storage by 2035 due to extensive forest expansion, while the HU scenario indicated a decline in carbon storage associated with rapid urbanization; and (3) the mountainous regions of the TRB, dominated by forestland, consistently exhibited higher carbon storage, whereas the Chengdu Plain region in the upper basin displayed the lowest. In conclusion, we recommend prioritizing the CD scenario in future development strategies to balance economic growth with ecological protection while simultaneously enhancing carbon storage. Our findings offer valuable insights to shape future LUCC policies in the Tuojiang River Basin, underscoring the adaptability of the coupled model approach to a wide range of geographic scales and contexts.

Suggested Citation

  • Qi Wang & Wenying Zhang & Jianguo Xia & Dinghua Ou & Zhaonan Tian & Xuesong Gao, 2024. "Multi-Scenario Simulation of Land-Use/Land-Cover Changes and Carbon Storage Prediction Coupled with the SD-PLUS-InVEST Model: A Case Study of the Tuojiang River Basin, China," Land, MDPI, vol. 13(9), pages 1-18, September.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:9:p:1518-:d:1480787
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/9/1518/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/9/1518/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiwei Deng & Bin Quan, 2022. "Intensity Characteristics and Multi-Scenario Projection of Land Use and Land Cover Change in Hengyang, China," IJERPH, MDPI, vol. 19(14), pages 1-18, July.
    2. Ming Zhang & Xiaojie Liu & Dan Yan, 2023. "Land Use Conflicts Assessment in Xiamen, China under Multiple Scenarios," Land, MDPI, vol. 12(2), pages 1-16, February.
    3. Meizhe Liao & Zongwen Zhang & Ruirui Yan & Keyu Bai, 2024. "The Assessment of Biodiversity Changes and Sustainable Agricultural Development in The Beijing-Tianjin-Hebei Region of China," Sustainability, MDPI, vol. 16(13), pages 1-20, July.
    4. Fei, Rilong & Lin, Ziyi & Chunga, Joseph, 2021. "How land transfer affects agricultural land use efficiency: Evidence from China’s agricultural sector," Land Use Policy, Elsevier, vol. 103(C).
    5. Wei Guo & Yongjia Teng & Yueguan Yan & Chuanwu Zhao & Wanqiu Zhang & Xianglin Ji, 2022. "Simulation of Land Use and Carbon Storage Evolution in Multi-Scenario: A Case Study in Beijing-Tianjin-Hebei Urban Agglomeration, China," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    6. Xuebin Zhang & Litang Yao & Jun Luo & Wenjuan Liang, 2022. "Exploring Changes in Land Use and Landscape Ecological Risk in Key Regions of the Belt and Road Initiative Countries," Land, MDPI, vol. 11(6), pages 1-22, June.
    7. Wang, Quan & Wang, Haijun & Chang, Ruihan & Zeng, Haoran & Bai, Xuepiao, 2022. "Dynamic simulation patterns and spatiotemporal analysis of land-use/land-cover changes in the Wuhan metropolitan area, China," Ecological Modelling, Elsevier, vol. 464(C).
    8. Jie Chen & Ruijie Shi & Geng Sun & Ya Guo & Min Deng & Xiuyuan Zhang, 2023. "Simulation-Based Optimization of the Urban Thermal Environment through Local Climate Zones Reorganization in Changsha City, China with the FLUS Model," Sustainability, MDPI, vol. 15(16), pages 1-28, August.
    9. Kılkış, Şiir, 2022. "Urban emissions and land use efficiency scenarios towards effective climate mitigation in urban systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    10. Dan Cudjoe, 2023. "Energy-economics and environmental prospects of integrated waste-to-energy projects in the Beijing-Tianjin-Hebei region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12597-12628, November.
    11. Dingrao Feng & Wenkai Bao & Meichen Fu & Min Zhang & Yiyu Sun, 2021. "Current and Future Land Use Characters of a National Central City in Eco-Fragile Region—A Case Study in Xi’an City Based on FLUS Model," Land, MDPI, vol. 10(3), pages 1-25, March.
    12. Xiaoyu Zhu & Zhongjun Wang & Tianci Gu & Yujun Zhang, 2024. "Multi–Scenario Prediction of Land Cover Changes and Habitat Quality Based on the FLUS–InVEST Model in Beijing," Land, MDPI, vol. 13(8), pages 1-19, July.
    13. Ouyang, Xiao & Xu, Jun & Li, Jiayu & Wei, Xiao & Li, Yonghui, 2022. "Land space optimization of urban-agriculture-ecological functions in the Changsha-Zhuzhou-Xiangtan Urban Agglomeration, China," Land Use Policy, Elsevier, vol. 117(C).
    14. Guanghui Li & Lei Chang & Haoye Li & Yuefen Li, 2023. "Modeling the Impact of Land Use Optimization on Non-Point Source Pollution: Evidence from Chinese Reservoir Watershed," Land, MDPI, vol. 13(1), pages 1-17, December.
    15. Ayşe Çağlıyan & Dündar Dağlı, 2022. "Monitoring Land Use Land Cover Changes and Modelling of Urban Growth Using a Future Land Use Simulation Model (FLUS) in Diyarbakır, Turkey," Sustainability, MDPI, vol. 14(15), pages 1-24, July.
    16. Yiting Zuo & Jie Cheng & Meichen Fu, 2022. "Analysis of Land Use Change and the Role of Policy Dimensions in Ecologically Complex Areas: A Case Study in Chongqing," Land, MDPI, vol. 11(5), pages 1-27, April.
    17. Bingkui Qiu & Yan Tu & Guoliang Ou & Min Zhou & Yifan Zhu & Shuhan Liu & Haoyang Ma, 2023. "Optimal Modeling of Sustainable Land Use Planning under Uncertain at a Watershed Level: Interval Stochastic Fuzzy Linear Programming with Chance Constraints," Land, MDPI, vol. 12(5), pages 1-21, May.
    18. Fandi Meng & Zhi Zhou & Pengtao Zhang, 2023. "Multi-Objective Optimization of Land Use in the Beijing–Tianjin–Hebei Region of China Based on the GMOP-PLUS Coupling Model," Sustainability, MDPI, vol. 15(5), pages 1-22, February.
    19. Wang, Liye & Zhang, Siyu & Tang, Lanping & Lu, Yanchi & Liu, Yanfang & Liu, Yaolin, 2022. "Optimizing distribution of urban land on the basis of urban land use intensity at prefectural city scale in mainland China," Land Use Policy, Elsevier, vol. 115(C).
    20. Wang, Huan & Zhang, Chao & Yao, Xiaochuang & Yun, Wenju & Ma, Jiani & Gao, Lulu & Li, Pengshan, 2022. "Scenario simulation of the tradeoff between ecological land and farmland in black soil region of Northeast China," Land Use Policy, Elsevier, vol. 114(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:9:p:1518-:d:1480787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.