IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9180-d872755.html
   My bibliography  Save this article

Monitoring Land Use Land Cover Changes and Modelling of Urban Growth Using a Future Land Use Simulation Model (FLUS) in Diyarbakır, Turkey

Author

Listed:
  • Ayşe Çağlıyan

    (Geography Department, Faculty of Humanity and Social Sciences, Fırat University, Elazığ 23150, Turkey)

  • Dündar Dağlı

    (Geography Department, Faculty of Humanity and Social Sciences, Fırat University, Elazığ 23150, Turkey)

Abstract

Land use and land cover (LULC) change corresponds to the greatest transformations that occur on the earth’s surface under physical, human and socio-economic geographical conditions. Increasing demand for residential and agricultural lands has been transforming all land classes and this should be investigated in the long term. In this study, we aim to determine LULC change and land use simulation in Diyarbakır with Geographical Information System (GIS) and Remote Sensing (RS) techniques. For this purpose, satellite images from 1984, 2002, and 2020 were classified at different levels by an object-based classification method. Accuracy assessments of the classified images were made and change detection analyses were performed using TerrSet software. The LULC changes were also estimated in different scenarios using a future land use simulation model (FLUS). The results show that natural and semi-natural areas are rapidly disappearing due to urban growth between 1984 and 2020. The results of the land use simulation show that by 2038, while the agricultural, pasture and water bodies will decrease, the built-up areas will increase. It is estimated that the city, which has developed in a west-northwest direction, will expand in the future and grow between Elazığ and Şanlıurfa Boulevard.

Suggested Citation

  • Ayşe Çağlıyan & Dündar Dağlı, 2022. "Monitoring Land Use Land Cover Changes and Modelling of Urban Growth Using a Future Land Use Simulation Model (FLUS) in Diyarbakır, Turkey," Sustainability, MDPI, vol. 14(15), pages 1-24, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9180-:d:872755
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9180/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9180/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xia Xu & Mengxi Guan & Honglei Jiang & Lingfei Wang, 2019. "Dynamic Simulation of Land Use Change of the Upper and Middle Streams of the Luan River, Northern China," Sustainability, MDPI, vol. 11(18), pages 1-15, September.
    2. Nan Cui & Chen-Chieh Feng & Rui Han & Luo Guo, 2019. "Impact of Urbanization on Ecosystem Health: A Case Study in Zhuhai, China," IJERPH, MDPI, vol. 16(23), pages 1-17, November.
    3. Rahel Hamad & Heiko Balzter & Kamal Kolo, 2018. "Predicting Land Use/Land Cover Changes Using a CA-Markov Model under Two Different Scenarios," Sustainability, MDPI, vol. 10(10), pages 1-23, September.
    4. Mekonnen H. Daba & Songcai You, 2022. "Quantitatively Assessing the Future Land-Use/Land-Cover Changes and Their Driving Factors in the Upper Stream of the Awash River Based on the CA–Markov Model and Their Implications for Water Resources," Sustainability, MDPI, vol. 14(3), pages 1-29, January.
    5. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Selamawit Haftu Gebresellase & Zhiyong Wu & Huating Xu & Wada Idris Muhammad, 2023. "Scenario-Based LULC Dynamics Projection Using the CA–Markov Model on Upper Awash Basin (UAB), Ethiopia," Sustainability, MDPI, vol. 15(2), pages 1-27, January.
    2. Sri Murniani Angelina Letsoin & David Herak & Fajar Rahmawan & Ratna Chrismiari Purwestri, 2020. "Land Cover Changes from 1990 to 2019 in Papua, Indonesia: Results of the Remote Sensing Imagery," Sustainability, MDPI, vol. 12(16), pages 1-18, August.
    3. Wafaa Majeed Mutashar Al-Hameedi & Jie Chen & Cheechouyang Faichia & Biswajit Nath & Bazel Al-Shaibah & Ali Al-Aizari, 2022. "Geospatial Analysis of Land Use/Cover Change and Land Surface Temperature for Landscape Risk Pattern Change Evaluation of Baghdad City, Iraq, Using CA–Markov and ANN Models," Sustainability, MDPI, vol. 14(14), pages 1-31, July.
    4. Milad Asadi & Amir Oshnooei-Nooshabadi & Samira-Sadat Saleh & Fattaneh Habibnezhad & Sonia Sarafraz-Asbagh & John Lodewijk Van Genderen, 2022. "Urban Sprawl Simulation Mapping of Urmia (Iran) by Comparison of Cellular Automata–Markov Chain and Artificial Neural Network (ANN) Modeling Approach," Sustainability, MDPI, vol. 14(23), pages 1-16, November.
    5. Zhiwei Deng & Bin Quan, 2022. "Intensity Characteristics and Multi-Scenario Projection of Land Use and Land Cover Change in Hengyang, China," IJERPH, MDPI, vol. 19(14), pages 1-18, July.
    6. Peng Tian & Luodan Cao & Jialin Li & Ruiliang Pu & Hongbo Gong & Changda Li, 2020. "Landscape Characteristics and Ecological Risk Assessment Based on Multi-Scenario Simulations: A Case Study of Yancheng Coastal Wetland, China," Sustainability, MDPI, vol. 13(1), pages 1-20, December.
    7. Changqing Sun & Yulong Bao & Battsengel Vandansambuu & Yuhai Bao, 2022. "Simulation and Prediction of Land Use/Cover Changes Based on CLUE-S and CA-Markov Models: A Case Study of a Typical Pastoral Area in Mongolia," Sustainability, MDPI, vol. 14(23), pages 1-21, November.
    8. Rungruang Janta & Laksanara Khwanchum & Pakorn Ditthakit & Nadhir Al-Ansari & Nguyen Thi Thuy Linh, 2022. "Water Yield Alteration in Thailand’s Pak Phanang Basin Due to Impacts of Climate and Land-Use Changes," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    9. Ming Zhang & Xiaojie Liu & Dan Yan, 2023. "Land Use Conflicts Assessment in Xiamen, China under Multiple Scenarios," Land, MDPI, vol. 12(2), pages 1-16, February.
    10. Meizhe Liao & Zongwen Zhang & Ruirui Yan & Keyu Bai, 2024. "The Assessment of Biodiversity Changes and Sustainable Agricultural Development in The Beijing-Tianjin-Hebei Region of China," Sustainability, MDPI, vol. 16(13), pages 1-20, July.
    11. Fei, Rilong & Lin, Ziyi & Chunga, Joseph, 2021. "How land transfer affects agricultural land use efficiency: Evidence from China’s agricultural sector," Land Use Policy, Elsevier, vol. 103(C).
    12. Nuaman Ejaz & Mohamed Elhag & Jarbou Bahrawi & Lifu Zhang & Hamza Farooq Gabriel & Khalil Ur Rahman, 2023. "Soil Erosion Modelling and Accumulation Using RUSLE and Remote Sensing Techniques: Case Study Wadi Baysh, Kingdom of Saudi Arabia," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    13. Leizhou Zhu & Yaping Huang, 2022. "Multi-Scenario Simulation of Ecosystem Service Value in Wuhan Metropolitan Area Based on PLUS-GMOP Model," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    14. Yi Xiao & Luo Guo & Weiguo Sang, 2020. "Impact of Fast Urbanization on Ecosystem Health in Mountainous Regions of Southwest China," IJERPH, MDPI, vol. 17(3), pages 1-16, January.
    15. Wei Guo & Yongjia Teng & Yueguan Yan & Chuanwu Zhao & Wanqiu Zhang & Xianglin Ji, 2022. "Simulation of Land Use and Carbon Storage Evolution in Multi-Scenario: A Case Study in Beijing-Tianjin-Hebei Urban Agglomeration, China," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    16. Cláudia M. Viana & Jorge Rocha, 2020. "Evaluating Dominant Land Use/Land Cover Changes and Predicting Future Scenario in a Rural Region Using a Memoryless Stochastic Method," Sustainability, MDPI, vol. 12(10), pages 1-28, May.
    17. Akvilė Feiferytė-Skirienė & Lina Draudvilienė & Žaneta Stasiškienė & Sergej Sosunkevič & Kastytis Pamakštys & Laura Daniusevičiūtė-Brazaitė & Inga Gurauskienė, 2022. "Co-Creation Hub Is the First Step for the Successful Creation of a Unified Urban Ecosystem-Kaunas City Example," IJERPH, MDPI, vol. 19(5), pages 1-12, February.
    18. Ehab Hendawy & A. A. Belal & E. S. Mohamed & Abdelaziz Elfadaly & Beniamino Murgante & Ali A. Aldosari & Rosa Lasaponara, 2019. "The Prediction and Assessment of the Impacts of Soil Sealing on Agricultural Land in the North Nile Delta (Egypt) Using Satellite Data and GIS Modeling," Sustainability, MDPI, vol. 11(17), pages 1-17, August.
    19. Yongjiu Feng & Jiafeng Wang & Xiaohua Tong & Yang Liu & Zhenkun Lei & Chen Gao & Shurui Chen, 2018. "The Effect of Observation Scale on Urban Growth Simulation Using Particle Swarm Optimization-Based CA Models," Sustainability, MDPI, vol. 10(11), pages 1-20, November.
    20. Xuebin Zhang & Litang Yao & Jun Luo & Wenjuan Liang, 2022. "Exploring Changes in Land Use and Landscape Ecological Risk in Key Regions of the Belt and Road Initiative Countries," Land, MDPI, vol. 11(6), pages 1-22, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9180-:d:872755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.