IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i7p933-d1423386.html
   My bibliography  Save this article

Evaluation of the Thermal Environment Based on the Urban Neighborhood Heat/Cool Island Effect

Author

Listed:
  • Li Qi

    (CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yuanman Hu

    (CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
    E’erguna Wetland Ecosystem National Research Station, Hulunbuir 022250, China)

  • Rencang Bu

    (CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
    E’erguna Wetland Ecosystem National Research Station, Hulunbuir 022250, China)

  • Binglun Li

    (CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China)

  • Yue Gao

    (CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Chunlin Li

    (CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
    E’erguna Wetland Ecosystem National Research Station, Hulunbuir 022250, China)

Abstract

Under rapid urbanization, the urban heat island (UHI) effect is increasing, which poses a serious threat to human settlements. Changes in neighborhood land surface temperature (LST) reflect the UHI effect at a finer scale, with implications for the thermal comfort of residents. Landsat images were used to analyze the distribution of the urban neighborhood heat/cool island (UNHI/UNCI) within the fourth ring area of Shenyang City. Three-dimensional buildings and the urban functional zones (UFZs) were combined to explore the relationships with the UNHI and UNCI. Using boosted regression trees to analyze the relative importance of UFZs in the UNHI and UNCI, the results showed a significant lowering effect on the neighborhood LST with increased building height, which may be due to the fact of more architectural shadows generated by higher buildings. As the size of the green space patches increased, the cooling amplitude and the influence distance had an increasing trend. Industrial and public service zones had the most significant effect on the UNHI, with influences of 30.46% and 19.35%, respectively. In comparison, green space zones and water contributed the most to the UNCI effect, with influences of 18.75% and 11.95%, respectively. These results will provide urban decision-makers with crucial information on mitigating UHI problems through urban planning.

Suggested Citation

  • Li Qi & Yuanman Hu & Rencang Bu & Binglun Li & Yue Gao & Chunlin Li, 2024. "Evaluation of the Thermal Environment Based on the Urban Neighborhood Heat/Cool Island Effect," Land, MDPI, vol. 13(7), pages 1-19, June.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:7:p:933-:d:1423386
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/7/933/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/7/933/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Scott R. Loarie & Philip B. Duffy & Healy Hamilton & Gregory P. Asner & Christopher B. Field & David D. Ackerly, 2009. "The velocity of climate change," Nature, Nature, vol. 462(7276), pages 1052-1055, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mouhamadou Bamba Sylla & Nellie Elguindi & Filippo Giorgi & Dominik Wisser, 2016. "Projected robust shift of climate zones over West Africa in response to anthropogenic climate change for the late 21st century," Climatic Change, Springer, vol. 134(1), pages 241-253, January.
    2. Mouhamadou Sylla & Nellie Elguindi & Filippo Giorgi & Dominik Wisser, 2016. "Projected robust shift of climate zones over West Africa in response to anthropogenic climate change for the late 21st century," Climatic Change, Springer, vol. 134(1), pages 241-253, January.
    3. Meineri, Eric & Dahlberg, C. Johan & Hylander, Kristoffer, 2015. "Using Gaussian Bayesian Networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution," Ecological Modelling, Elsevier, vol. 313(C), pages 127-136.
    4. Michael A. Wulder & Jeffrey A. Cardille & Joanne C. White & Bronwyn Rayfield, 2018. "Context and Opportunities for Expanding Protected Areas in Canada," Land, MDPI, vol. 7(4), pages 1-21, November.
    5. Bruno R Ribeiro & Lilian P Sales & Paulo De Marco Jr. & Rafael Loyola, 2016. "Assessing Mammal Exposure to Climate Change in the Brazilian Amazon," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-13, November.
    6. Alexander Correa-Metrio & Mark Bush & Socorro Lozano-García & Susana Sosa-Nájera, 2013. "Millennial-Scale Temperature Change Velocity in the Continental Northern Neotropics," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-1, December.
    7. Leslie A. Jones & Clint C. Muhlfeld & Lucy A. Marshall, 2017. "Projected warming portends seasonal shifts of stream temperatures in the Crown of the Continent Ecosystem, USA and Canada," Climatic Change, Springer, vol. 144(4), pages 641-655, October.
    8. Erickson, Adam & Nitschke, Craig & Coops, Nicholas & Cumming, Steven & Stenhouse, Gordon, 2015. "Past-century decline in forest regeneration potential across a latitudinal and elevational gradient in Canada," Ecological Modelling, Elsevier, vol. 313(C), pages 94-102.
    9. Tomas O. Höök & Carolyn J. Foley & Paris Collingsworth & Leslie Dorworth & Brant Fisher & Jason T. Hoverman & Elizabeth LaRue & Mark Pyron & Jennifer Tank, 2020. "An assessment of the potential impacts of climate change on freshwater habitats and biota of Indiana, USA," Climatic Change, Springer, vol. 163(4), pages 1897-1916, December.
    10. Henry R. Scharf & Ann M. Raiho & Sierra Pugh & Carl A. Roland & David K. Swanson & Sarah E. Stehn & Mevin B. Hooten, 2022. "Multivariate Bayesian clustering using covariate‐informed components with application to boreal vegetation sensitivity," Biometrics, The International Biometric Society, vol. 78(4), pages 1427-1440, December.
    11. Marcin Zarek & Marta Kempf, 2023. "Distribution of genetic variability in mature and progeny populations of Abies alba Mill. from the Polish Western and Eastern Carpathians," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 69(4), pages 144-157.
    12. Koko Warner & Zinta Zommers & Anita Wreford & Margot Hurlbert & David Viner & Jill Scantlan & Kenna Halsey & Kevin Halsey & Chet Tamang, 2019. "Characteristics of Transformational Adaptation in Climate-Land-Society Interactions," Sustainability, MDPI, vol. 11(2), pages 1-22, January.
    13. Disha Sachan & Pankaj Kumar & Md. Saquib Saharwardi, 2022. "Contemporary climate change velocity for near-surface temperatures over India," Climatic Change, Springer, vol. 173(3), pages 1-19, August.
    14. Avery P. Hill & Christopher B. Field, 2021. "Forest fires and climate-induced tree range shifts in the western US," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    15. Hyeyeong Choe & James H. Thorne, 2019. "Climate exposure of East Asian temperate forests suggests transboundary climate adaptation strategies are needed," Climatic Change, Springer, vol. 156(1), pages 51-67, September.
    16. Ramón Elía & Sébastien Biner & Anne Frigon & Hélène Côté, 2014. "Timescales associated with climate change and their relevance in adaptation strategies," Climatic Change, Springer, vol. 126(1), pages 93-106, September.
    17. Takuya Iwamura & Kerrie A Wilson & Oscar Venter & Hugh P Possingham, 2010. "A Climatic Stability Approach to Prioritizing Global Conservation Investments," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-9, November.
    18. Antoine Adde & Diana Stralberg & Travis Logan & Christine Lepage & Steven Cumming & Marcel Darveau, 2020. "Projected effects of climate change on the distribution and abundance of breeding waterfowl in Eastern Canada," Climatic Change, Springer, vol. 162(4), pages 2339-2358, October.
    19. Katherine Dagon & Daniel P. Schrag, 2019. "Quantifying the effects of solar geoengineering on vegetation," Climatic Change, Springer, vol. 153(1), pages 235-251, March.
    20. Luke Shoo & Ary Hoffmann & Stephen Garnett & Robert Pressey & Yvette Williams & Martin Taylor & Lorena Falconi & Colin Yates & John Scott & Diogo Alagador & Stephen Williams, 2013. "Making decisions to conserve species under climate change," Climatic Change, Springer, vol. 119(2), pages 239-246, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:7:p:933-:d:1423386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.