IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i1p190-d1569944.html
   My bibliography  Save this article

Dynamics of Cropland Non-Agriculturalization in Shaanxi Province of China and Its Attribution Using a Machine Learning Approach

Author

Listed:
  • Huiting Yan

    (College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling 712100, China
    Institute of Land Comprehensive Science, Northwest Research Institute of Engineering Investigations and Design, Xi’an 710003, China)

  • Hao Chen

    (College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling 712100, China
    Institute of Soil and Water Conservation, Chinese Academy and Sciences and Ministry of Water Resources, Yangling 712100, China)

  • Fei Wang

    (College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling 712100, China
    Institute of Soil and Water Conservation, Chinese Academy and Sciences and Ministry of Water Resources, Yangling 712100, China)

  • Linjing Qiu

    (Department of Earth and Environmental Science, School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

Cropland is a critical component of food security. Under the multiple contexts of climate change, urbanization, and industrialization, China’s cropland faces unprecedented challenges. Understanding the spatiotemporal dynamics of cropland non-agriculturalization (CLNA) and quantifying the contributions of its driving factors are vital for effective cropland management and the optimal allocation of land resources. This study investigated the spatiotemporal dynamics and driving mechanisms of CLNA in Shaanxi Province (SP), a major grain-producing region in China, from 2001 to 2020, using geospatial statistical analysis and machine learning techniques. The results showed that, between 2001 and 2020, approximately 17,200.8 km 2 of cropland (8.4% of the total area) was converted to non-cropland, with a pronounced spatial clustering pattern. XGBoost-SHAP attribution analysis revealed that among the 15 selected driving factors, precipitation, road network density, rural population, population density, grain yield, registered population, and slope length exerted the most significant influence on CLNA in SP. Notably, the interaction effects between these factors contributed more substantially than the individual factors. These findings highlight the pronounced regional disparities in CLNA across SP, driven by a complex interplay of multiple factors, underscoring the urgent need to implement water-saving agricultural practices and optimize rural land-use planning to maintain the dynamic balance of cropland and ensure food security in the region.

Suggested Citation

  • Huiting Yan & Hao Chen & Fei Wang & Linjing Qiu, 2025. "Dynamics of Cropland Non-Agriculturalization in Shaanxi Province of China and Its Attribution Using a Machine Learning Approach," Land, MDPI, vol. 14(1), pages 1-18, January.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:1:p:190-:d:1569944
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/1/190/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/1/190/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bo Chen & Na Yao, 2024. "Evolution Characteristics of Cultivated Land Protection Policy in China Based on Smith Policy Implementation," Agriculture, MDPI, vol. 14(7), pages 1-17, July.
    2. Han Huang & Yang Zhou & Mingjie Qian & Zhaoqi Zeng, 2021. "Land Use Transition and Driving Forces in Chinese Loess Plateau: A Case Study from Pu County, Shanxi Province," Land, MDPI, vol. 10(1), pages 1-15, January.
    3. Leshan Yu & Hengtong Shi & Haixia Wu & Xiangmiao Hu & Yan Ge & Leshui Yu & Wenyu Cao, 2024. "The Role of Climate Change Perceptions in Sustainable Agricultural Development: Evidence from Conservation Tillage Technology Adoption in Northern China," Land, MDPI, vol. 13(5), pages 1-25, May.
    4. Graeme S. Cumming & Andreas Buerkert & Ellen M. Hoffmann & Eva Schlecht & Stephan von Cramon-Taubadel & Teja Tscharntke, 2014. "Implications of agricultural transitions and urbanization for ecosystem services," Nature, Nature, vol. 515(7525), pages 50-57, November.
    5. P. Njenga & A. Davis, 2003. "Drawing the road map to rural poverty reduction," Transport Reviews, Taylor & Francis Journals, vol. 23(2), pages 217-241, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weijia Chen & Yongquan Lu & Guilin Liu, 2022. "Balancing cropland gain and desert vegetation loss: The key to rural revitalization in Xinjiang, China," Growth and Change, Wiley Blackwell, vol. 53(3), pages 1122-1145, September.
    2. Juan Li & Xunzhou Chunyu & Feng Huang, 2022. "Land Use Pattern Changes and the Driving Forces in the Shiyang River Basin from 2000 to 2018," Sustainability, MDPI, vol. 15(1), pages 1-27, December.
    3. Duy X. Tran & Diane Pearson & Alan Palmer & David Gray, 2020. "Developing a Landscape Design Approach for the Sustainable Land Management of Hill Country Farms in New Zealand," Land, MDPI, vol. 9(6), pages 1-29, June.
    4. Xinyao Li & Lingzhi Wang & Bryan Pijanowski & Lingpeng Pan & Hichem Omrani & Anqi Liang & Yi Qu, 2022. "The Spatio-Temporal Pattern and Transition Mode of Recessive Cultivated Land Use Morphology in the Huaibei Region of the Jiangsu Province," Land, MDPI, vol. 11(11), pages 1-16, November.
    5. Dai, Xuhuan & Li, Bo & Zheng, Hua & Yang, Yanzheng & Yang, Zihan & Peng, Chenchen, 2023. "Can sedentarization decrease the dependence of pastoral livelihoods on ecosystem services?," Ecological Economics, Elsevier, vol. 203(C).
    6. Verena Preusse & Nils Nölke & Meike Wollni, 2024. "Urbanization and adoption of sustainable agricultural practices in the rural‐urban interface of Bangalore, India," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 72(2), pages 167-198, June.
    7. Junnan Xia & Mengyao Hong & Wei Wei, 2023. "Changes and Driving Forces of Urban–Agricultural–Ecological Space in the Yangtze River Economic Belt from 2000 to 2020," Land, MDPI, vol. 12(5), pages 1-17, May.
    8. Xiaomeng Guo & Li Wang & Qiang Fu & Fang Ma, 2024. "Ecological Function Zoning Framework for Small Watershed Ecosystem Services Based on Multivariate Analysis from a Scale Perspective," Land, MDPI, vol. 13(7), pages 1-18, July.
    9. Yaofeng Yang & Yajuan Chen & Zhenrong Yu & Pengyao Li & Xuedong Li, 2020. "How Does Improve Farmers’ Attitudes toward Ecosystem Services to Support Sustainable Development of Agriculture? Based on Environmental Kuznets Curve Theory," Sustainability, MDPI, vol. 12(20), pages 1-16, October.
    10. Xing Liu & Zhaoyang Cai & Yan Xu & Huihui Zheng & Kaige Wang & Fengrong Zhang, 2022. "Suitability Evaluation of Cultivated Land Reserved Resources in Arid Areas Based on Regional Water Balance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1463-1479, March.
    11. Qindong Fan & Xiaoyu Yang & Chenming Zhang, 2022. "A Review of Ecosystem Services Research Focusing on China against the Background of Urbanization," IJERPH, MDPI, vol. 19(14), pages 1-17, July.
    12. Ellen M Hoffmann & Verena Konerding & Sunil Nautiyal & Andreas Buerkert, 2019. "Is the push-pull paradigm useful to explain rural-urban migration? A case study in Uttarakhand, India," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-22, April.
    13. Targetti, Stefano & Schaller, Lena L. & Kantelhardt, Jochen, 2021. "A fuzzy cognitive mapping approach for the assessment of public-goods governance in agricultural landscapes," Land Use Policy, Elsevier, vol. 107(C).
    14. Wu, Tong & Rocha, Juan C. & Berry, Kevin & Chaigneau, Tomas & Hamann, Maike & Lindkvist, Emilie & Qiu, Jiangxiao & Schill, Caroline & Shepon, Alon & Crépin, Anne-Sophie & Folke, Carl, 2024. "Triple Bottom Line or Trilemma? Global Tradeoffs Between Prosperity, Inequality, and the Environment," World Development, Elsevier, vol. 178(C).
    15. Xiaolin Yang & Jinran Xiong & Taisheng Du & Xiaotang Ju & Yantai Gan & Sien Li & Longlong Xia & Yanjun Shen & Steven Pacenka & Tammo S. Steenhuis & Kadambot H. M. Siddique & Shaozhong Kang & Klaus But, 2024. "Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Giedrius Dabašinskas & Gintarė Sujetovienė, 2024. "Spatial and Temporal Changes in Supply and Demand for Ecosystem Services in Response to Urbanization: A Case Study in Vilnius, Lithuania," Land, MDPI, vol. 13(4), pages 1-15, April.
    17. Junna Liu & Siyan Zeng & Jing Ma & Yuanyuan Chang & Yan Sun & Fu Chen, 2022. "The Impacts of Rapid Urbanization on Farmland Marginalization: A Case Study of the Yangtze River Delta, China," Agriculture, MDPI, vol. 12(8), pages 1-22, August.
    18. Song, Xiaoqing & Wang, Xiong & Hu, Shougeng & Xiao, Renbin & Scheffran, Jürgen, 2022. "Functional transition of cultivated ecosystems: Underlying mechanisms and policy implications in China," Land Use Policy, Elsevier, vol. 119(C).
    19. Wei Liu & Xinyu Wu, 2023. "Poverty Alleviation Resettlement and Household Natural Resources Dependence: A Case Study from Ankang Prefecture, China," Agriculture, MDPI, vol. 13(5), pages 1-17, May.
    20. Chen Zeng & Xiangzheng Deng & Jianing Dong & Peiying Hu, 2016. "Urbanization and Sustainability: Comparison of the Processes in “BIC” Countries," Sustainability, MDPI, vol. 8(4), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:1:p:190-:d:1569944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.