IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i4p480-d1372101.html
   My bibliography  Save this article

Assessing Spatial Heterogeneity in Urban Park Vitality for a Sustainable Built Environment: A Case Study of Changsha

Author

Listed:
  • Liwei Qin

    (School of Architecture and Planning, Hunan University, Changsha 410082, China
    These authors contributed equally to this work.)

  • Wenke Zong

    (School of Architecture and Planning, Hunan University, Changsha 410082, China
    These authors contributed equally to this work.)

  • Kai Peng

    (School of Architecture and Planning, Hunan University, Changsha 410082, China)

  • Rongpeng Zhang

    (School of Architecture and Planning, Hunan University, Changsha 410082, China
    Hunan Key Laboratory of Sciences of Urban and Rural Human Settlements in Hilly Areas, Hunan University, Changsha 410082, China
    Hunan International Innovation Cooperation Base on Science and Technology of Local Architecture, Changsha 410082, China)

Abstract

In the realm of sustainable city development, evaluating the spatial vitality of urban green spaces (UGS) has become increasingly pivotal for assessing public space quality. This study delves into the spatial heterogeneity of park vitality across diverse urban landscapes at a city scale, addressing limitations inherent in conventional approaches to understanding the dynamics of park vitality. Leveraging geotagged check-in data from 65 parks in the study case of Changsha City, a quantitative analysis was undertaken to assess spatial vitality. The investigation incorporated data concerning internal and external factors influencing park vitality, employing the Multi-scale Geographically Weighted Regression (MGWR) model to dissect nuanced spatial heterogeneity. The research uncovers notable spatial discrepancies in factors influencing park vitality across diverse urban areas, emphasizing the reliance on adjacent residential communities and internal commercial amenities provision. These dependencies correspond with economic development differences among urban locales, revealing distinct geographic trends. This study has a novel perspective and methodology for investigating urban park vitality, providing significant insights for urban green space planning and management. It emphasizes the necessity of acknowledging spatial diversity in urban park planning and design by incorporating the distinct socio-economic characteristics of each urban zone, which is crucial for both urban planners and policymakers.

Suggested Citation

  • Liwei Qin & Wenke Zong & Kai Peng & Rongpeng Zhang, 2024. "Assessing Spatial Heterogeneity in Urban Park Vitality for a Sustainable Built Environment: A Case Study of Changsha," Land, MDPI, vol. 13(4), pages 1-24, April.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:4:p:480-:d:1372101
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/4/480/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/4/480/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sisman, S. & Aydinoglu, A.C., 2022. "A modelling approach with geographically weighted regression methods for determining geographic variation and influencing factors in housing price: A case in Istanbul," Land Use Policy, Elsevier, vol. 119(C).
    2. Wang, Jie & Zhang, Yuzhen & Zhang, Xiaoling & Song, Mengqiao & Ye, Jianping, 2023. "The spatio-temporal trends of urban green space and its interactions with urban growth: Evidence from the Yangtze River Delta region, China," Land Use Policy, Elsevier, vol. 128(C).
    3. Yang, Jingjing & Deng, Zhang & Guo, Siyue & Chen, Yixing, 2023. "Development of bottom-up model to estimate dynamic carbon emission for city-scale buildings," Applied Energy, Elsevier, vol. 331(C).
    4. James, Amity & Rowley, Steven & Davies, Amanda & ViforJ, Rachel Ong & Singh, Ranjodh, 2021. "Population growth and mobility in Australia: implications for housing and urban development policies," SocArXiv zb5kc, Center for Open Science.
    5. Zuo Zhang & Yangxiong Xiao & Xiang Luo & Min Zhou, 2020. "Urban human activity density spatiotemporal variations and the relationship with geographical factors: An exploratory Baidu heatmaps‐based analysis of Wuhan, China," Growth and Change, Wiley Blackwell, vol. 51(1), pages 505-529, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hengyu Gu & Hanchen Yu & Mehak Sachdeva & Ye Liu, 2021. "Analyzing the distribution of researchers in China: An approach using multiscale geographically weighted regression," Growth and Change, Wiley Blackwell, vol. 52(1), pages 443-459, March.
    2. Tsai, I-Chun, 2024. "A wise investment by urban governments: Evidence from intelligent sports facilities," Journal of Asian Economics, Elsevier, vol. 92(C).
    3. Liying Gao & Xingchao Xiang & Wenjian Chen & Riqin Nong & Qilin Zhang & Xuan Chen & Yixing Chen, 2024. "Research on Urban Street Spatial Quality Based on Street View Image Segmentation," Sustainability, MDPI, vol. 16(16), pages 1-22, August.
    4. Liu, Xuan & Yang, Dujuan & Arentze, Theo & Wielders, Tom, 2023. "The willingness of social housing tenants to participate in natural gas-free heating systems project: Insights from a stated choice experiment in the Netherlands," Applied Energy, Elsevier, vol. 350(C).
    5. Zhou, Yang & Wang, Heng & Qiu, Huanguang, 2023. "Population aging reduces carbon emissions: Evidence from China's latest three censuses," Applied Energy, Elsevier, vol. 351(C).
    6. Wei Zhao & Dianfeng Liu & Jiqiang Niu & Jianhua He & Feng Xu, 2024. "Spatial Heterogeneity Analysis of the Multidimensional Characteristics of Urban Green Spaces in China—A Study Based on 285 Prefecture-Level Cities," Land, MDPI, vol. 13(7), pages 1-22, July.
    7. Liang, Fachao & Zhu, Runmiao & Lin, Sheng-Hau, 2023. "Exploring spatial relationship between landscape configuration and ecosystem services: A case study of Xiamen–Zhangzhou–Quanzhou in China," Ecological Modelling, Elsevier, vol. 486(C).
    8. Doan, Quang Cuong, 2023. "Determining the optimal land valuation model: A case study of Hanoi, Vietnam," Land Use Policy, Elsevier, vol. 127(C).
    9. Zhenwei Wang & Xiaochun Wang & Zijin Dong & Lisan Li & Wangjun Li & Shicheng Li, 2023. "More Urban Elderly Care Facilities Should Be Placed in Densely Populated Areas for an Aging Wuhan of China," Land, MDPI, vol. 12(1), pages 1-13, January.
    10. Doan, Quang Cuong, 2024. "The spatiotemporal trends of urban-rural green spaces and their heterogeneous relationships with population and economic vitality: Evidence from the Red River Delta, Vietnam," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    11. Dan, Zhaohui & Song, Aoye & Yu, Xiaojun & Zhou, Yuekuan, 2024. "Electrification-driven circular economy with machine learning-based multi-scale and cross-scale modelling approach," Energy, Elsevier, vol. 299(C).
    12. Yunbo Liu & Wanjiang Wang & Yumeng Huang, 2024. "Prediction and Optimization Analysis of the Performance of an Office Building in an Extremely Hot and Cold Region," Sustainability, MDPI, vol. 16(10), pages 1-40, May.
    13. Ming Hu & Siavash Ghorbany, 2024. "Building Stock Models for Embodied Carbon Emissions—A Review of a Nascent Field," Sustainability, MDPI, vol. 16(5), pages 1-18, March.
    14. Shumei Zhang & Wenshi Zhang & Ying Wang & Xiaoyu Zhao & Peihao Song & Guohang Tian & Audrey L. Mayer, 2020. "Comparing Human Activity Density and Green Space Supply Using the Baidu Heat Map in Zhengzhou, China," Sustainability, MDPI, vol. 12(17), pages 1-14, August.
    15. Feng Dong & Guoqing Li & Yajie Liu & Qing Xu & Caixia Li, 2023. "Spatial-Temporal Evolution and Cross-Industry Synergy of Carbon Emissions: Evidence from Key Industries in the City in Jiangsu Province, China," Sustainability, MDPI, vol. 15(5), pages 1-27, February.
    16. Huimin Wang & Canrui Lin & Sihua Ou & Qianying Feng & Kui Guo & Xiaojian Wei & Jiazhou Xie, 2024. "Multilevel Change of Urban Green Space and Spatiotemporal Heterogeneity Analysis of Driving Factors," Sustainability, MDPI, vol. 16(11), pages 1-20, June.
    17. Jiao, Lei & Xie, Baiwei & Lu, Sijin, 2023. "Understanding the economy of natural resources: Fundamental role of natural resources in sustainable development," Resources Policy, Elsevier, vol. 86(PB).
    18. Zhao, Xiaoqing & Xu, Yifei & Pu, Junwei & Tao, Junyi & Chen, Yanjun & Huang, Pei & Shi, Xinyu & Ran, Yuju & Gu, Zexian, 2024. "Achieving the supply-demand balance of ecosystem services through zoning regulation based on land use thresholds," Land Use Policy, Elsevier, vol. 139(C).
    19. Tongning Li & Daozheng Li & Diling Liang & Simin Huang, 2022. "Coupling Coordination Degree of Ecological-Economic and Its Influencing Factors in the Counties of Yangtze River Economic Belt," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    20. Zakharov, Konstantin & Mizgajski, Andrzej, 2024. "Socioeconomic and political settings for the land development decreasing urban green. Inside view from Moscow," Land Use Policy, Elsevier, vol. 141(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:4:p:480-:d:1372101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.