IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i17p7075-d406233.html
   My bibliography  Save this article

Comparing Human Activity Density and Green Space Supply Using the Baidu Heat Map in Zhengzhou, China

Author

Listed:
  • Shumei Zhang

    (College of Forestry, Henan Agricultural University, Zhengzhou 450002, China)

  • Wenshi Zhang

    (College of Information and Management Sciences, Henan Agricultural University, Zhengzhou 450002, China)

  • Ying Wang

    (College of Forestry, Henan Agricultural University, Zhengzhou 450002, China)

  • Xiaoyu Zhao

    (College of Forestry, Henan Agricultural University, Zhengzhou 450002, China)

  • Peihao Song

    (College of Forestry, Henan Agricultural University, Zhengzhou 450002, China)

  • Guohang Tian

    (College of Forestry, Henan Agricultural University, Zhengzhou 450002, China)

  • Audrey L. Mayer

    (School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA)

Abstract

Rapidly growing cities often struggle with insufficient green space, although information on when and where more green space is needed can be difficult to collect. Big data on the density of individuals in cities collected from mobile phones can estimate the usage intensity of urban green space. Taking Zhengzhou’s central city as an example, we combine the real-time human movement data provided by the Baidu Heat Map, which indicates the density of mobile phones, with vector overlays of different kinds of green space. We used the geographically weighted regression (GWR) method to estimate differentials in green space usage between weekdays and weekends, utilizing the location and the density of the aggregation of people with powered-up mobile phones. Compared with weekends, the aggregation of people in urban green spaces on workdays tends to vary more in time and be more concentrated in space, while the highest usage is more stable on weekends. More importantly, the percentage of weekday green space utilization is higher in small parks and green strips in the city, with the density increasing in those small areas, while the green space at a greater distance to the city center is underutilized. This study validates the potential of applying Baidu Heat Map data to provide a dynamic perspective of green space use, and highlights the need for more green space in city centers.

Suggested Citation

  • Shumei Zhang & Wenshi Zhang & Ying Wang & Xiaoyu Zhao & Peihao Song & Guohang Tian & Audrey L. Mayer, 2020. "Comparing Human Activity Density and Green Space Supply Using the Baidu Heat Map in Zhengzhou, China," Sustainability, MDPI, vol. 12(17), pages 1-14, August.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:7075-:d:406233
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/17/7075/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/17/7075/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiao-Yong Yan & Wen-Xu Wang & Zi-You Gao & Ying-Cheng Lai, 2017. "Universal model of individual and population mobility on diverse spatial scales," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    2. Zuo Zhang & Yangxiong Xiao & Xiang Luo & Min Zhou, 2020. "Urban human activity density spatiotemporal variations and the relationship with geographical factors: An exploratory Baidu heatmaps‐based analysis of Wuhan, China," Growth and Change, Wiley Blackwell, vol. 51(1), pages 505-529, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qidi Dong & Jun Cai & Shuo Chen & Pengman He & Xuli Chen, 2022. "Spatiotemporal Analysis of Urban Green Spatial Vitality and the Corresponding Influencing Factors: A Case Study of Chengdu, China," Land, MDPI, vol. 11(10), pages 1-17, October.
    2. Huaibin Wei & Liyuan Zhang & Jing Liu, 2022. "Hydrodynamic Modelling and Flood Risk Analysis of Urban Catchments under Multiple Scenarios: A Case Study of Dongfeng Canal District, Zhengzhou," IJERPH, MDPI, vol. 19(22), pages 1-18, November.
    3. Tianyang Ge & Wenjun Hou & Yang Xiao, 2023. "Study on the Regeneration of City Centre Spatial Structure Pedestrianisation Based on Space Syntax: Case Study on 21 City Centres in the UK," Land, MDPI, vol. 12(6), pages 1-26, June.
    4. Liguo Zeng & Chunqing Liu & Mo Wang & Chengling Zhou & Guanhong Xie & Binsheng Wu, 2023. "Delineating the Dichotomy and Synergistic Dynamics of Environmental Determinants on Temporally Responsive Park Vitality," Sustainability, MDPI, vol. 15(17), pages 1-17, August.
    5. Xinyang Li & Marek Kozlowski & Sumarni Binti Ismail & Sarah Abdulkareem Salih, 2024. "Spatial Distribution Characteristics of Leisure Urban Spaces and the Correlation with Population Activity Intensity: A Case Study of Nanjing, China," Sustainability, MDPI, vol. 16(16), pages 1-21, August.
    6. Zhenrao Cai & Dan Gao & Xin Xiao & Linguo Zhou & Chaoyang Fang, 2023. "The Flow of Green Exercise, Its Characteristics, Mechanism, and Pattern in Urban Green Space Networks: A Case Study of Nangchang, China," Land, MDPI, vol. 12(3), pages 1-19, March.
    7. Yuhan Sun & Bo Wan & Qiang Sheng, 2024. "Relationship Between Spatial Form, Functional Distribution, and Vitality of Railway Station Areas Under Station-City Synergetic Development: A Case Study of Four Special-Grade Stations in Beijing," Sustainability, MDPI, vol. 16(22), pages 1-32, November.
    8. Fan Liu & Danmei Sun & Yanqin Zhang & Shaoping Hong & Minhua Wang & Jianwen Dong & Chen Yan & Qin Yang, 2022. "Tourist Landscape Preferences in a Historic Block Based on Spatiotemporal Big Data—A Case Study of Fuzhou, China," IJERPH, MDPI, vol. 20(1), pages 1-20, December.
    9. Yilei Tao & Ying Wang & Xinyu Wang & Guohang Tian & Shumei Zhang, 2022. "Measuring the Correlation between Human Activity Density and Streetscape Perceptions: An Analysis Based on Baidu Street View Images in Zhengzhou, China," Land, MDPI, vol. 11(3), pages 1-19, March.
    10. Hongxu Guo & Zhuoqiao Luo & Mengtian Li & Shumin Kong & Haiyan Jiang, 2022. "A Literature Review of Big Data-Based Urban Park Research in Visitor Dimension," Land, MDPI, vol. 11(6), pages 1-17, June.
    11. Hongyu Gong & Xiaozihan Wang & Zihao Wang & Ziyi Liu & Qiushan Li & Yunhan Zhang, 2022. "How Did the Built Environment Affect Urban Vibrancy? A Big Data Approach to Post-Disaster Revitalization Assessment," IJERPH, MDPI, vol. 19(19), pages 1-25, September.
    12. Xiaojia Liu & Xi Chen & Yan Huang & Weihong Wang & Mingkan Zhang & Yang Jin, 2023. "Landscape Aesthetic Value of Waterfront Green Space Based on Space–Psychology–Behavior Dimension: A Case Study along Qiantang River (Hangzhou Section)," IJERPH, MDPI, vol. 20(4), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Rongxiang & Xiao, Jingyi & McBride, Elizabeth C. & Goulias, Konstadinos G., 2021. "Understanding senior's daily mobility patterns in California using human mobility motifs," Journal of Transport Geography, Elsevier, vol. 94(C).
    2. Hengyu Gu & Hanchen Yu & Mehak Sachdeva & Ye Liu, 2021. "Analyzing the distribution of researchers in China: An approach using multiscale geographically weighted regression," Growth and Change, Wiley Blackwell, vol. 52(1), pages 443-459, March.
    3. He, Yifan & Zhao, Chen & Zeng, An, 2022. "Ranking locations in a city via the collective home-work relations in human mobility data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    4. Li, Xueyan & Qiu, Heting & Yang, Yanni & Zhang, Hankun, 2022. "Differentiated fares depend on bus line and time for urban public transport network based on travelers’ day-to-day group behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    5. Xu, Paiheng & Yin, Likang & Yue, Zhongtao & Zhou, Tao, 2019. "On predictability of time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 345-351.
    6. Huang, Feihu & Qiao, Shaojie & Peng, Jian & Guo, Bing & Xiong, Xi & Han, Nan, 2019. "A movement model for air passengers based on trip purpose," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 798-808.
    7. Dong, Bing & Liu, Yapan & Fontenot, Hannah & Ouf, Mohamed & Osman, Mohamed & Chong, Adrian & Qin, Shuxu & Salim, Flora & Xue, Hao & Yan, Da & Jin, Yuan & Han, Mengjie & Zhang, Xingxing & Azar, Elie & , 2021. "Occupant behavior modeling methods for resilient building design, operation and policy at urban scale: A review," Applied Energy, Elsevier, vol. 293(C).
    8. Xiaomei Lin & Yusak O. Susilo & Chunfu Shao & Chengxi Liu, 2018. "The Implication of Road Toll Discount for Mode Choice: Intercity Travel during the Chinese Spring Festival Holiday," Sustainability, MDPI, vol. 10(8), pages 1-16, August.
    9. Meng, Xin & Guo, Mingxue & Gao, Ziyou & Yang, Zhenzhen & Yuan, Zhilu & Kang, Liujiang, 2022. "The effects of Wuhan highway lockdown measures on the spread of COVID-19 in China," Transport Policy, Elsevier, vol. 117(C), pages 169-180.
    10. He, Zhengbing, 2020. "Spatial-temporal fractal of urban agglomeration travel demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    11. Jincheng Jiang & Jinsong Chen & Wei Tu & Chisheng Wang, 2019. "A Novel Effective Indicator of Weighted Inter-City Human Mobility Networks to Estimate Economic Development," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    12. Ma, Yin-Jie & Jiang, Zhi-Qiang & Podobnik, Boris, 2022. "Predictability of players’ actions as a mechanism to boost cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    13. Chen, Ya & Li, Xue & Zhang, Richong & Huang, Zi-Gang & Lai, Ying-Cheng, 2020. "Instantaneous success and influence promotion in cyberspace — how do they occur?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    14. Yang, Yitao & Jia, Bin & Yan, Xiao-Yong & Zhi, Danyue & Song, Dongdong & Chen, Yan & de Bok, Michiel & Tavasszy, Lóránt A. & Gao, Ziyou, 2023. "Uncovering and modeling the hierarchical organization of urban heavy truck flows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    15. Chao Fan & Yang Yang & Ali Mostafavi, 2024. "Neural embeddings of urban big data reveal spatial structures in cities," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-15, December.
    16. Zhenwei Wang & Xiaochun Wang & Zijin Dong & Lisan Li & Wangjun Li & Shicheng Li, 2023. "More Urban Elderly Care Facilities Should Be Placed in Densely Populated Areas for an Aging Wuhan of China," Land, MDPI, vol. 12(1), pages 1-13, January.
    17. Yang, Yitao & Jia, Bin & Yan, Xiao-Yong & Chen, Yan & Song, Dongdong & Zhi, Danyue & Wang, Yiyun & Gao, Ziyou, 2023. "Estimating intercity heavy truck mobility flows using the deep gravity framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    18. Gehong Zhang & Junming Li & Sijin Li & Yang Wang, 2018. "Exploring Spatial Trends and Influencing Factors for Gastric Cancer Based on Bayesian Statistics: A Case Study of Shanxi, China," IJERPH, MDPI, vol. 15(9), pages 1-17, August.
    19. Pengjun Zhao & Hao Wang & Qiyang Liu & Xiao-Yong Yan & Jingzhong Li, 2024. "Unravelling the spatial directionality of urban mobility," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Siqin Wang & Mengxi Zhang & Tao Hu & Xiaokang Fu & Zhe Gao & Briana Halloran & Yan Liu, 2021. "A Bibliometric Analysis and Network Visualisation of Human Mobility Studies from 1990 to 2020: Emerging Trends and Future Research Directions," Sustainability, MDPI, vol. 13(10), pages 1-22, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:7075-:d:406233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.