IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i4p440-d1367535.html
   My bibliography  Save this article

Spatiotemporal Dynamics and Influencing Factors of Vegetation Net Primary Productivity in the Yangtze River Delta Region, China

Author

Listed:
  • Tinghui Wang

    (School of Politics and Public Administration, Soochow University, Suzhou 215123, China
    These authors contributed equally to this work.)

  • Mengfan Gao

    (School of Urban and Rural Construction, Shanxi Agricultural University, Jinzhong 030801, China
    These authors contributed equally to this work.)

  • Qi Fu

    (School of Politics and Public Administration, Soochow University, Suzhou 215123, China
    The Institute of Regional Governance, Soochow University, Suzhou 215123, China
    Research Institute of Metropolitan Development of China, Soochow University, Suzhou 215123, China)

  • Jinhua Chen

    (School of Politics and Public Administration, Soochow University, Suzhou 215123, China
    The Institute of Regional Governance, Soochow University, Suzhou 215123, China
    Research Institute of Metropolitan Development of China, Soochow University, Suzhou 215123, China)

Abstract

Vegetation Net Primary Productivity (NPP) plays a crucial role in terrestrial carbon sinks and the global carbon cycle. Investigating the spatiotemporal dynamics and influencing factors in the Yangtze River Delta (YRD) region can furnish a solid scientific foundation for green, low-carbon, and sustainable development in China, as well as a reference for other rapidly urbanizing regions. This study focuses on the YRD region as an illustration and utilizes the Carnegie–Ames–Stanford Approach (CASA model) to quantify NPP in this region from 2000 to 2018. Investigation into the spatiotemporal dynamics and influencing factors was conducted using Theil–Sen median trend analysis and scenario analysis. The results indicate that the NPP in the YRD region from 2000 to 2018 exhibited pronounced spatial differentiation characteristics, typically exhibiting a spatial distribution pattern of being high in the south and low in the north, high in the west and low in the east. Additionally, the expansion of built-up areas and the reduction in cultivated land have the potential to reduce NPP in the YRD region. Moreover, the influence of land-use and land-cover change (LULCC) is anticipated to be relatively limited compared to that of climate change. Furthermore, changes in precipitation were found to be positively correlated with changes in NPP, with the effect being relatively more pronounced. The correlation between temperature and NPP demonstrated spatial differentiation, with a mainly positive correlation in the central and southern parts of the YRD and a mainly negative correlation in the northern part. Changes in solar radiation had a negative correlation with changes in NPP. Based on these results, it is recommended that local governments strictly enforce urban development boundaries and manage the disorderly expansion of built-up areas, enhance the regional irrigation infrastructure, and address air pollution, so as to ensure the necessary conditions for the growth of vegetation, reduce greenhouse gas emissions, and control regional temperature rises. This study can provide stronger evidence for revealing the influencing mechanisms of NPP through the control of impact conditions and the exclusion of confounding factors via scenario analysis. The policy implications can offer insights into NPP enhancement and environmental management for the YRD and other rapidly urbanizing regions.

Suggested Citation

  • Tinghui Wang & Mengfan Gao & Qi Fu & Jinhua Chen, 2024. "Spatiotemporal Dynamics and Influencing Factors of Vegetation Net Primary Productivity in the Yangtze River Delta Region, China," Land, MDPI, vol. 13(4), pages 1-24, March.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:4:p:440-:d:1367535
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/4/440/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/4/440/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Zeyang & Luan, Weixin & Zhang, Zhenchao & Su, Min, 2020. "Relationship between urban construction land expansion and population/economic growth in Liaoning Province, China," Land Use Policy, Elsevier, vol. 99(C).
    2. Xiongyi Zhang & Jia Ning, 2023. "Patterns, Trends, and Causes of Vegetation Change in the Three Rivers Headwaters Region," Land, MDPI, vol. 12(6), pages 1-19, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiangsu Li & Weihua Li & Bo Li & Liangrong Duan & Tianjiao Zhang & Qi Jia, 2022. "Construction Land Expansion of Resource-Based Cities in China: Spatiotemporal Characteristics and Driving Factors," IJERPH, MDPI, vol. 19(23), pages 1-20, December.
    2. Song, Min & Yi, Luping & Hu, Can, 2023. "Building up a compensation-oriented transferable development right mechanism: A theoretical and empirical exploration in Hubei, China," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    3. Qing Wang & Yuhang Xiao, 2022. "Has Urban Construction Land Achieved Low-Carbon Sustainable Development? A Case Study of North China Plain, China," Sustainability, MDPI, vol. 14(15), pages 1-29, August.
    4. Zeyang Li & Weixin Luan & Zhenchao Zhang & Min Su, 2023. "Research on the Interactive Relationship of Spatial Expansion between Estuarine and Coastal Port Cities," Land, MDPI, vol. 12(2), pages 1-25, January.
    5. Kaihuai Liao & Wenyan Huang & Changjian Wang & Rong Wu & Yang Hu, 2022. "Spatio-Temporal Evolution Features and Impact Factors of Urban Expansion in Underdeveloped Cities: A Case Study of Nanchang, China," Land, MDPI, vol. 11(10), pages 1-24, October.
    6. Fernandes, António Carlos Pinheiro & de Oliveira Martins, Lisa Maria & Pacheco, Fernando António Leal & Fernandes, Luís Filipe Sanches, 2021. "The consequences for stream water quality of long-term changes in landscape patterns: Implications for land use management and policies," Land Use Policy, Elsevier, vol. 109(C).
    7. Shisi Tang & Laixi Song & Shiqi Wan & Yafei Wang & Yazhen Jiang & Jinfeng Liao, 2022. "Long-Time-Series Evolution and Ecological Effects of Coastline Length in Coastal Zone: A Case Study of the Circum-Bohai Coastal Zone, China," Land, MDPI, vol. 11(8), pages 1-19, August.
    8. Stavros Kalogiannidis & Christina-Ioanna Papadopoulou & Efstratios Loizou & Fotios Chatzitheodoridis, 2023. "Risk, Vulnerability, and Resilience in Agriculture and Their Impact on Sustainable Rural Economy Development: A Case Study of Greece," Agriculture, MDPI, vol. 13(6), pages 1-20, June.
    9. Khan, Irfan & Hou, Fujun & Irfan, Muhammad & Zakari, Abdulrasheed & Le, Hoang Phong, 2021. "Does energy trilemma a driver of economic growth? The roles of energy use, population growth, and financial development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    10. Xiaobo Liu & Yukuan Wang & Ming Li, 2021. "How to Identify Future Priority Areas for Urban Development: An Approach of Urban Construction Land Suitability in Ecological Sensitive Areas," IJERPH, MDPI, vol. 18(8), pages 1-21, April.
    11. Ke Zhao & Danling Chen & Xupeng Zhang & Xiaojie Zhang, 2022. "How Do Urban Land Expansion, Land Finance, and Economic Growth Interact?," IJERPH, MDPI, vol. 19(9), pages 1-15, April.
    12. Wenfang Pu & Anlu Zhang, 2021. "Can Market Reforms Curb the Expansion of Industrial Land?—Based on the Panel Data Analysis of Five National-Level Urban Agglomerations," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    13. Guanglong Dong & Wenxin Zhang & Xinliang Xu & Kun Jia, 2021. "Multi-Dimensional Feature Recognition and Policy Implications of Rural Human–Land Relationships in China," Land, MDPI, vol. 10(10), pages 1-17, October.
    14. Lei, Weiqian & Jiao, Limin & Xu, Gang, 2022. "Understanding the urban scaling of urban land with an internal structure view to characterize China’s urbanization," Land Use Policy, Elsevier, vol. 112(C).
    15. Xiangbin Peng & Ruomei Tang & Junjie Li & Huanchen Tang & Zixi Guo, 2025. "Spatiotemporal Dynamics of Landscape Pattern and Vegetation Ecological Quality in Sanjiangyuan National Park," Sustainability, MDPI, vol. 17(1), pages 1-17, January.
    16. Yihao Chen & Shuai Zhang & Qingqing Ye & Weiqiang Chen & Yingchao Li & Enxiang Cai & Xuesong Kong & Long Guo & Jiwei Li, 2024. "Research on the Spatiotemporal Coupling Characteristics between Urban Population and Land in China Based on the Improved Coupling Model of Polar Coordinates," Land, MDPI, vol. 13(7), pages 1-19, July.
    17. Tianqing Zhao & Wen Wang, 2023. "Coordination Dynamics between Population Change and Built-Up Land Expansion in Mainland China during 2000–2020," Sustainability, MDPI, vol. 15(22), pages 1-24, November.
    18. Xiaodong Zhang & Yongjun Tang & Haoying Han & Zhilu Chen, 2023. "Evolution Characteristics and Main Influencing Factors of Carbon Dioxide Emissions in Chinese Cities from 2005 to 2020," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
    19. Wencang Shen & Jianjun Zhang & Xiangli Zhou & Shengnan Li & Xiaoli Geng, 2021. "How to Perceive the Trade-Off of Economic and Ecological Intensity of Land Use in a City? A Functional Zones-Based Case Study of Tangshan, China," Land, MDPI, vol. 10(6), pages 1-17, May.
    20. Zeng, Chen & Yin, Yizhen & Guo, Luyu & Liu, Chenlu & Zhang, Yang & Huang, Zhengxue, 2024. "Integrating the administrative spillover effect into the spatial governance system to revisit land development: A study in urban-rural fringe areas of Wuhan and neighboring cities, China," Land Use Policy, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:4:p:440-:d:1367535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.