IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i20p14849-d1259129.html
   My bibliography  Save this article

Evolution Characteristics and Main Influencing Factors of Carbon Dioxide Emissions in Chinese Cities from 2005 to 2020

Author

Listed:
  • Xiaodong Zhang

    (College of Hydraulic and Architectural Engineering, Tarim University, Alaer 843300, China
    Institute of Urban and Rural Planning Theories and Technologies, Zhejiang University, Hangzhou 310058, China
    These authors contributed equally to this work.)

  • Yongjun Tang

    (College of Hydraulic and Architectural Engineering, Tarim University, Alaer 843300, China
    These authors contributed equally to this work.)

  • Haoying Han

    (Institute of Urban and Rural Planning Theories and Technologies, Zhejiang University, Hangzhou 310058, China)

  • Zhilu Chen

    (Guangzhou Urban Planning & Design Survey Research Institute, Guangzhou 511466, China)

Abstract

Based on the carbon emission database of the China Urban Greenhouse Gas Working Group, this paper analyzed the spatiotemporal evolution characteristics and main influencing factors of urban carbon dioxide emissions in China using ArcGIS spatial analysis and SPSS statistical analysis methods, in order to provide a reference for the formulation of the national “double-carbon” strategy and the construction of low-carbon urbanization. The results showed that (1) the urban carbon dioxide emissions in China exhibit a “point-line-area” spreading spatial grid. Carbon dioxide emissions form a planar emission pattern surrounded by the Beijing–Tianjin–Hebei urban agglomeration, Yangtze River Delta urban agglomeration, and Central Plains urban agglomeration. A high per capita and high-intensity emission belt from Xinjiang to Inner Mongolia has been formed. (2) The proportion of industrial emissions continues to decrease, and the range of high industrial emissions has gradually crossed the “Hu Huan-yong Line”, spreading from eastern China to the whole country. The emissions from transportation, the service industry, and households have become new growth points, and high-value emissions from households have also shown a nationwide spreading trend. (3) The main factors influencing the spatial distribution of carbon dioxide emissions are urbanization, the economy, industry, investment, and household energy consumption.

Suggested Citation

  • Xiaodong Zhang & Yongjun Tang & Haoying Han & Zhilu Chen, 2023. "Evolution Characteristics and Main Influencing Factors of Carbon Dioxide Emissions in Chinese Cities from 2005 to 2020," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:14849-:d:1259129
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/20/14849/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/20/14849/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Zeyang & Luan, Weixin & Zhang, Zhenchao & Su, Min, 2020. "Relationship between urban construction land expansion and population/economic growth in Liaoning Province, China," Land Use Policy, Elsevier, vol. 99(C).
    2. Xiaodong Zhang & Haoying Han & Yongjun Tang & Zhilu Chen, 2023. "Spatial Distribution Characteristics and Driving Factors of Tourism Resources in China," Land, MDPI, vol. 12(5), pages 1-16, May.
    3. Zhang, Shaojun & Wu, Ye & Liu, Huan & Huang, Ruikun & Un, Puikei & Zhou, Yu & Fu, Lixin & Hao, Jiming, 2014. "Real-world fuel consumption and CO2 (carbon dioxide) emissions by driving conditions for light-duty passenger vehicles in China," Energy, Elsevier, vol. 69(C), pages 247-257.
    4. Glaeser, Edward L. & Kahn, Matthew E., 2010. "The greenness of cities: Carbon dioxide emissions and urban development," Journal of Urban Economics, Elsevier, vol. 67(3), pages 404-418, May.
    5. Bin, Shui & Dowlatabadi, Hadi, 2005. "Consumer lifestyle approach to US energy use and the related CO2 emissions," Energy Policy, Elsevier, vol. 33(2), pages 197-208, January.
    6. Kamakaté, Fatumata & Schipper, Lee, 2009. "Trends in truck freight energy use and carbon emissions in selected OECD countries from 1973 to 2005," Energy Policy, Elsevier, vol. 37(10), pages 3743-3751, October.
    7. Chen, Huanyu & Yi, Jizheng & Chen, Aibin & Peng, Duanxiang & Yang, Jieqiong, 2023. "Green technology innovation and CO2 emission in China: Evidence from a spatial-temporal analysis and a nonlinear spatial durbin model," Energy Policy, Elsevier, vol. 172(C).
    8. Selden Thomas M. & Song Daqing, 1994. "Environmental Quality and Development: Is There a Kuznets Curve for Air Pollution Emissions?," Journal of Environmental Economics and Management, Elsevier, vol. 27(2), pages 147-162, September.
    9. Wang, Jianda & Jiang, Qingzhe & Dong, Xiucheng & Dong, Kangyin, 2021. "Decoupling and decomposition analysis of investments and CO2 emissions in information and communication technology sector," Applied Energy, Elsevier, vol. 302(C).
    10. Zhang, You & Yuan, Zengwei & Margni, Manuele & Bulle, Cécile & Hua, Hui & Jiang, Songyan & Liu, Xuewei, 2019. "Intensive carbon dioxide emission of coal chemical industry in China," Applied Energy, Elsevier, vol. 236(C), pages 540-550.
    11. Nejat, Payam & Jomehzadeh, Fatemeh & Taheri, Mohammad Mahdi & Gohari, Mohammad & Abd. Majid, Muhd Zaimi, 2015. "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 843-862.
    12. Duro, Juan Antonio & Padilla, Emilio, 2006. "International inequalities in per capita CO2 emissions: A decomposition methodology by Kaya factors," Energy Economics, Elsevier, vol. 28(2), pages 170-187, March.
    13. Zhang, Ning & Yu, Keren & Chen, Zhongfei, 2017. "How does urbanization affect carbon dioxide emissions? A cross-country panel data analysis," Energy Policy, Elsevier, vol. 107(C), pages 678-687.
    14. Lu, Heli & Liu, Guifang, 2014. "Spatial effects of carbon dioxide emissions from residential energy consumption: A county-level study using enhanced nocturnal lighting," Applied Energy, Elsevier, vol. 131(C), pages 297-306.
    15. Bin, Shui & Dowlatabadi, Hadi, 2005. "Corrigendum to "Consumer lifestyles approach to US energy use and the related CO2 emissions": [Energy Policy 33 (2005) 197-208]," Energy Policy, Elsevier, vol. 33(10), pages 1362-1363, July.
    16. Zhou, Xiaoyan & Zhang, Jie & Li, Junpeng, 2013. "Industrial structural transformation and carbon dioxide emissions in China," Energy Policy, Elsevier, vol. 57(C), pages 43-51.
    17. Sun, Lu & Liu, Wenjing & Li, Zhaoling & Cai, Bofeng & Fujii, Minoru & Luo, Xiao & Chen, Wei & Geng, Yong & Fujita, Tsuyoshi & Le, Yiping, 2021. "Spatial and structural characteristics of CO2 emissions in East Asian megacities and its indication for low-carbon city development," Applied Energy, Elsevier, vol. 284(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhibo Zhao & Jiamin Ren & Zheng Liu, 2023. "How Does Urbanization Affect Carbon Emission Performance? Evidence from 282 Cities in China," Sustainability, MDPI, vol. 15(21), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Honghong & Lahiri, Radhika, 2022. "Urbanization, energy-use intensity and emissions: A sectoral approach," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 667-684.
    2. Yueyue Rong & Junsong Jia & Min Ju & Chundi Chen & Yangming Zhou & Yexi Zhong, 2021. "Multi-Perspective Analysis of Household Carbon Dioxide Emissions from Direct Energy Consumption by the Methods of Logarithmic Mean Divisia Index and σ Convergence in Central China," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    3. Moises Neil V. Seriño & Stephan Klasen, 2015. "Estimation and Determinants of the Philippines' Household Carbon Footprint," The Developing Economies, Institute of Developing Economies, vol. 53(1), pages 44-62, March.
    4. Joyance Meechai & Manel Wijesinha, 2022. "Household energy expenditure and consumption patterns in the United States," Computational Statistics, Springer, vol. 37(5), pages 2095-2127, November.
    5. Ala-Mantila, Sanna & Heinonen, Jukka & Junnila, Seppo, 2014. "Relationship between urbanization, direct and indirect greenhouse gas emissions, and expenditures: A multivariate analysis," Ecological Economics, Elsevier, vol. 104(C), pages 129-139.
    6. Jiansheng Qu & Tek Maraseni & Lina Liu & Zhiqiang Zhang & Talal Yusaf, 2015. "A Comparison of Household Carbon Emission Patterns of Urban and Rural China over the 17 Year Period (1995–2011)," Energies, MDPI, vol. 8(9), pages 1-21, September.
    7. Underwood, Anthony & Fremstad, Anders, 2018. "Does sharing backfire? A decomposition of household and urban economies in CO2 emissions," Energy Policy, Elsevier, vol. 123(C), pages 404-413.
    8. Xu, Xinkuo & Han, Liyan & Lv, Xiaofeng, 2016. "Household carbon inequality in urban China, its sources and determinants," Ecological Economics, Elsevier, vol. 128(C), pages 77-86.
    9. Zhang, Xiaoling & Wang, Yue, 2017. "How to reduce household carbon emissions: A review of experience and policy design considerations," Energy Policy, Elsevier, vol. 102(C), pages 116-124.
    10. Moises Neil V. Seriño, 2020. "Rising carbon footprint inequality in the Philippines," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(2), pages 173-195, April.
    11. Sirous Ghanbari & Mohammad Reza Mansouri Daneshvar, 2021. "Urban and rural contribution to the GHG emissions in the MECA countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6418-6452, April.
    12. Pedro J. Zarco-Periñán & Fco Javier Zarco-Soto & Irene M. Zarco-Soto & José L. Martínez-Ramos & Rafael Sánchez-Durán, 2022. "CO 2 Emissions in Buildings: A Synopsis of Current Studies," Energies, MDPI, vol. 15(18), pages 1-10, September.
    13. Sanna Ala-Mantila & Jukka Heinonen & Seppo Junnila, 2013. "Greenhouse Gas Implications of Urban Sprawl in the Helsinki Metropolitan Area," Sustainability, MDPI, vol. 5(10), pages 1-18, October.
    14. Lina Liu & Jiansheng Qu & Afton Clarke-Sather & Tek Narayan Maraseni & Jiaxing Pang, 2017. "Spatial Variations and Determinants of Per Capita Household CO 2 Emissions (PHCEs) in China," Sustainability, MDPI, vol. 9(7), pages 1-19, July.
    15. Xinkuo Xu & Liyan Han, 2017. "Diverse Effects of Consumer Credit on Household Carbon Emissions at Quantiles: Evidence from Urban China," Sustainability, MDPI, vol. 9(9), pages 1-25, September.
    16. Thøgersen, John, 2017. "Housing-related lifestyle and energy saving: A multi-level approach," Energy Policy, Elsevier, vol. 102(C), pages 73-87.
    17. Liu, Lan-Cui & Wu, Gang, 2013. "Relating five bounded environmental problems to China's household consumption in 2011–2015," Energy, Elsevier, vol. 57(C), pages 427-433.
    18. Gudipudi, Ramana & Rybski, Diego & Lüdeke, Matthias K.B. & Zhou, Bin & Liu, Zhu & Kropp, Jürgen P., 2019. "The efficient, the intensive, and the productive: Insights from urban Kaya scaling," Applied Energy, Elsevier, vol. 236(C), pages 155-162.
    19. Guiying Cao & Junlian Gao & Ming Ren & Tatiana Ermolieva & Xiangyang Xu & Elena Rovenskaya, 2017. "Societal Dimension of Energy Consumption ¨C Exploring Environmental Inequality in China," Research in World Economy, Research in World Economy, Sciedu Press, vol. 8(2), pages 66-77, December.
    20. Lixiao Zhang & Qiuhong Hu & Fan Zhang, 2014. "Input-Output Modeling for Urban Energy Consumption in Beijing: Dynamics and Comparison," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:14849-:d:1259129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.