IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i8p4252-d537828.html
   My bibliography  Save this article

How to Identify Future Priority Areas for Urban Development: An Approach of Urban Construction Land Suitability in Ecological Sensitive Areas

Author

Listed:
  • Xiaobo Liu

    (Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    College of Geography and Resources Science, Neijiang Normal University, Neijiang 641100, China)

  • Yukuan Wang

    (Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China)

  • Ming Li

    (Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China)

Abstract

The suitability of urban construction land (SUCL) is key to the appropriate utilization of land resources and represents an important foundation for regional exploration and land management. This study explores the SUCL conceptual framework by considering the theory of human-land relationships. The upper reaches of the Yangtze River were studied, a typical ecologically-sensitive area of China. The spatial pattern and control of the SUCL were determined using the improved entropy method. The results show that an area of 91 × 10 4 km 2 was categorized as prohibited or restricted, and these categories account for 28.61% and 50.66% of the total area, respectively. Priority areas and suitable areas are mainly located in the Chengdu Plain, the urban agglomeration of southern Sichuan Province, Chongqing, and the economic corridor in the west, and the surrounding cities of Guiyang and Kunming. SUCL hotspots feature obvious spatial heterogeneity and are concentrated in Sichuan Basin and Guizhou Plateau. The SUCL is obviously constrained by the physical geography of this region. In addition, towns affected by the pole–axis effect have stronger suitability for development and construction. These findings will be very useful for land managers as they provide relevant information about urban development in mountainous areas.

Suggested Citation

  • Xiaobo Liu & Yukuan Wang & Ming Li, 2021. "How to Identify Future Priority Areas for Urban Development: An Approach of Urban Construction Land Suitability in Ecological Sensitive Areas," IJERPH, MDPI, vol. 18(8), pages 1-21, April.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:8:p:4252-:d:537828
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/8/4252/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/8/4252/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xie, Hualin & Chen, Qianru & Lu, Fucai & Wu, Qing & Wang, Wei, 2018. "Spatial-temporal disparities, saving potential and influential factors of industrial land use efficiency: A case study in urban agglomeration in the middle reaches of the Yangtze River," Land Use Policy, Elsevier, vol. 75(C), pages 518-529.
    2. Shengzhi Huang & Bo Ming & Qiang Huang & Guoyong Leng & Beibei Hou, 2017. "A Case Study on a Combination NDVI Forecasting Model Based on the Entropy Weight Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(11), pages 3667-3681, September.
    3. Li, Xijing & Huang, Bo & Li, Rongrong & Zhang, Yipei, 2016. "Exploring the impact of high speed railways on the spatial redistribution of economic activities - Yangtze River Delta urban agglomeration as a case study," Journal of Transport Geography, Elsevier, vol. 57(C), pages 194-206.
    4. Mokarram, Marzieh & Mirsoleimani, Abbas, 2018. "Using Fuzzy-AHP and order weight average (OWA) methods for land suitability determination for citrus cultivation in ArcGIS (Case study: Fars province, Iran)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 506-518.
    5. Arán Carrión, J. & Espín Estrella, A. & Aznar Dols, F. & Zamorano Toro, M. & Rodríguez, M. & Ramos Ridao, A., 2008. "Environmental decision-support systems for evaluating the carrying capacity of land areas: Optimal site selection for grid-connected photovoltaic power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2358-2380, December.
    6. Sona Bikdeli, 2020. "Redevelopment modeling for land suitability evaluation of the suburb brown-fields using fuzzy logic and GIS, northeastern Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(7), pages 6213-6232, October.
    7. Vasu, Duraisamy & Srivastava, Rajeev & Patil, Nitin G. & Tiwary, Pramod & Chandran, Padikkal & Kumar Singh, Surendra, 2018. "A comparative assessment of land suitability evaluation methods for agricultural land use planning at village level," Land Use Policy, Elsevier, vol. 79(C), pages 146-163.
    8. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    9. Ustaoglu, E. & Aydınoglu, A.C., 2020. "Suitability evaluation of urban construction land in Pendik district of Istanbul, Turkey," Land Use Policy, Elsevier, vol. 99(C).
    10. Li, Zeyang & Luan, Weixin & Zhang, Zhenchao & Su, Min, 2020. "Relationship between urban construction land expansion and population/economic growth in Liaoning Province, China," Land Use Policy, Elsevier, vol. 99(C).
    11. Chen, Xin & Jiang, Li & Zhang, Guoliang & Meng, Lijun & Pan, Zhihua & Lun, Fei & An, Pingli, 2021. "Green-depressing cropping system: A referential land use practice for fallow to ensure a harmonious human-land relationship in the farming-pastoral ecotone of northern China," Land Use Policy, Elsevier, vol. 100(C).
    12. Zuo Zhang & Min Zhou & Guoliang Ou & Shukui Tan & Yan Song & Lu Zhang & Xin Nie, 2019. "Land Suitability Evaluation and an Interval Stochastic Fuzzy Programming-Based Optimization Model for Land-Use Planning and Environmental Policy Analysis," IJERPH, MDPI, vol. 16(21), pages 1-23, October.
    13. Lin, Yatang, 2017. "Travel costs and urban specialization patterns: Evidence from China’s high speed railway system," Journal of Urban Economics, Elsevier, vol. 98(C), pages 98-123.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sentao Wu & Xin Deng & Yanbin Qi, 2022. "Factors Driving Coordinated Development of Urban Green Economy: An Empirical Evidence from the Chengdu-Chongqing Economic Circle," IJERPH, MDPI, vol. 19(10), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xueli & Jiang, Chunxia & Wang, Feng & Yao, Shujie, 2021. "The impact of high-speed railway on urban housing prices in China: A network accessibility perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 84-99.
    2. Changchang Liu & Chuxiong Deng & Zhongwu Li & Yaojun Liu & Shuyuan Wang, 2022. "Optimization of Spatial Pattern of Land Use: Progress, Frontiers, and Prospects," IJERPH, MDPI, vol. 19(10), pages 1-22, May.
    3. Zhang, Yuxin & Xu, Dafeng, 2023. "Service on the rise, agriculture and manufacturing in decline: The labor market effects of high-speed rail services in Spain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    4. Yu, Binbin & Zhou, Xinru, 2023. "Urban administrative hierarchy and urban land use efficiency: Evidence from Chinese cities," International Review of Economics & Finance, Elsevier, vol. 88(C), pages 178-195.
    5. Yingying Guan & Xueming Li & Jun Yang & Songbo Li & Shenzhen Tian, 2022. "Spatial differentiation of comprehensive suitability of urban human settlements based on GIS: a case study of Liaoning Province, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4150-4174, March.
    6. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    7. Tonini, Davide & Vadenbo, Carl & Astrup, Thomas Fruergaard, 2017. "Priority of domestic biomass resources for energy: Importance of national environmental targets in a climate perspective," Energy, Elsevier, vol. 124(C), pages 295-309.
    8. Lotze-Campen, Hermann & von Witzke, Harald & Noleppa, Steffen & Schwarz, Gerald, 2015. "Science for food, climate protection and welfare: An economic analysis of plant breeding research in Germany," Agricultural Systems, Elsevier, vol. 136(C), pages 79-84.
    9. Wang, Yongpei & Guan, Zhongyu & Zhang, Qian, 2023. "Railway opening and carbon emissions in distressed areas: Evidence from China's state-level poverty-stricken counties," Transport Policy, Elsevier, vol. 130(C), pages 55-67.
    10. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    11. Tianjiao Zhao & Xiang Xiao & Qinghui Dai, 2021. "Transportation Infrastructure Construction and High-Quality Development of Enterprises: Evidence from the Quasi-Natural Experiment of High-Speed Railway Opening in China," Sustainability, MDPI, vol. 13(23), pages 1-23, December.
    12. Knut Einar Rosendahl & Jon Strand, 2011. "Carbon Leakage from the Clean Development Mechanism," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 27-50.
    13. Vrînceanu, Alexandra & Dumitrașcu, Monica & Kucsicsa, Gheorghe, 2022. "Site suitability for photovoltaic farms and current investment in Romania," Renewable Energy, Elsevier, vol. 187(C), pages 320-330.
    14. Kriegler, Elmar, 2011. "Comment," Energy Economics, Elsevier, vol. 33(4), pages 594-596, July.
    15. Proost, Stef & Van Dender, Kurt, 2012. "Energy and environment challenges in the transport sector," Economics of Transportation, Elsevier, vol. 1(1), pages 77-87.
    16. repec:fpr:ifprib:2012ghienglish is not listed on IDEAS
    17. Canabarro, N.I. & Silva-Ortiz, P. & Nogueira, L.A.H. & Cantarella, H. & Maciel-Filho, R. & Souza, G.M., 2023. "Sustainability assessment of ethanol and biodiesel production in Argentina, Brazil, Colombia, and Guatemala," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    18. Baral, Nabin & Rabotyagov, Sergey, 2017. "How much are wood-based cellulosic biofuels worth in the Pacific Northwest? Ex-ante and ex-post analysis of local people's willingness to pay," Forest Policy and Economics, Elsevier, vol. 83(C), pages 99-106.
    19. Baka, Jennifer & Roland-Holst, David, 2009. "Food or fuel? What European farmers can contribute to Europe's transport energy requirements and the Doha Round," Energy Policy, Elsevier, vol. 37(7), pages 2505-2513, July.
    20. Nguyen, Thu Lan T. & Hermansen, John E. & Mogensen, Lisbeth, 2010. "Fossil energy and GHG saving potentials of pig farming in the EU," Energy Policy, Elsevier, vol. 38(5), pages 2561-2571, May.
    21. Sarah Jansen & William Foster & Gustavo Anríquez & Jorge Ortega, 2021. "Understanding Farm-Level Incentives within the Bioeconomy Framework: Prices, Product Quality, Losses, and Bio-Based Alternatives," Sustainability, MDPI, vol. 13(2), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:8:p:4252-:d:537828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.