IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i5p1140-d1079800.html
   My bibliography  Save this article

Urban Heat Island Dynamics in an Urban–Rural Domain with Variable Porosity: Numerical Methodology and Simulation

Author

Listed:
  • Néstor García-Chan

    (Department of Physics, CUCEI, University of Guadalajara, Guadalajara 44430, Mexico
    These authors contributed equally to this work.)

  • Juan A. Licea-Salazar

    (Department of Mathematics, CUCEI, University of Guadalajara, Guadalajara 44430, Mexico
    These authors contributed equally to this work.)

  • Luis G. Gutierrez-Ibarra

    (Division of Basic Science, CUCEI, University of Guadalajara, Guadalajara 44430, Mexico
    These authors contributed equally to this work.)

Abstract

Heat transfer and fluid dynamics modeling in porous media is a widely explored topic in physics and applied mathematics, and it involves advanced numerical methods to address its non-linear nature. One interesting application has been the urban-heat-island (UHI) numerical simulation. The UHI is a negative consequence of the increasing urbanization in cities, which is defined as the presence of warm temperatures inside the urban canopy in contrast to the colder surroundings. Furthermore, an interesting phenomena occurs within a UHI context when the city transitions from a heat island to a cold island, matching the increases and decreases of solar radiation over the span of a day, as well as the decrease in the UHI intensity as a result of wind action. The numerical study in this paper had, as its main goal, to reproduce this phenomenon. Therefore, the key elements proposed in this work were the following: A 2D horizontal urban–rural domain that had a variable porosity with a Gaussian distribution centered in the city center. A non-stationary Darcy–Forchheimer–Brinkman model to simulate the flow in porous media, combined with an air–soil heat transport model linked by a balancing equation for the surface energy that includes the evapotranspiration of plants. In regards to the numerical resolution of the model, a classical numerical methodology based on the finite elements of Lagrange P 1 type combined with explicit and implicit time-marching schemes have been effective for high-quality numerical simulations. Several numerical tests were performed on a domain inspired by the metropolitan region of Guadalajara (Mexico), in which not only the temperature inversion was reproduced but also the simulation of the UHI transition by strong wind gusts.

Suggested Citation

  • Néstor García-Chan & Juan A. Licea-Salazar & Luis G. Gutierrez-Ibarra, 2023. "Urban Heat Island Dynamics in an Urban–Rural Domain with Variable Porosity: Numerical Methodology and Simulation," Mathematics, MDPI, vol. 11(5), pages 1-18, February.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:5:p:1140-:d:1079800
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/5/1140/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/5/1140/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carlos E. Villarreal-Olavarrieta & Néstor García-Chan & Miguel E. Vázquez-Méndez, 2021. "Simulation of Heat and Water Transport on Different Tree Canopies: A Finite Element Approach," Mathematics, MDPI, vol. 9(19), pages 1-20, September.
    2. Yang Liu & Hong Li & Yanwei Du & Jinfeng Wang, 2013. "Explicit Multistep Mixed Finite Element Method for RLW Equation," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-12, May.
    3. Li, Xiaoma & Zhou, Yuyu & Yu, Sha & Jia, Gensuo & Li, Huidong & Li, Wenliang, 2019. "Urban heat island impacts on building energy consumption: A review of approaches and findings," Energy, Elsevier, vol. 174(C), pages 407-419.
    4. Liu Tian & Yongcai Li & Jun Lu & Jue Wang, 2021. "Review on Urban Heat Island in China: Methods, Its Impact on Buildings Energy Demand and Mitigation Strategies," Sustainability, MDPI, vol. 13(2), pages 1-31, January.
    5. Tingzhen Ming & Shengnan Lian & Yongjia Wu & Tianhao Shi & Chong Peng & Yueping Fang & Renaud de Richter & Nyuk Hien Wong, 2021. "Numerical Investigation on the Urban Heat Island Effect by Using a Porous Media Model," Energies, MDPI, vol. 14(15), pages 1-23, August.
    6. Qing-li Zhao & Zong-cheng Li & You-zheng Ding, 2013. "Expanded Mixed Finite Element Method for the Two-Dimensional Sobolev Equation," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-9, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nacer Sellila & Mohammed Louaked & Waleed Mouhali & Houari Mechkour, 2023. "Optimal Control Strategies for Mitigating Urban Heat Island Intensity in Porous Urban Environments," Mathematics, MDPI, vol. 11(23), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Xiaoyu & Zhang, Hanwen & Liu, Lin & Huang, Jiahao & Liu, Liru & Liu, Jing, 2024. "Establishment of LCZ-based urban building energy consumption dataset in hot and humid subtropical regions through a bottom-up method," Applied Energy, Elsevier, vol. 368(C).
    2. Sun, Lingling & Yang, Yidu, 2022. "The a posteriori error estimates and adaptive computation of nonconforming mixed finite elements for the Stokes eigenvalue problem," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    3. Sánchez-Guevara Sánchez, Carmen & Sanz Fernández, Ana & Núñez Peiró, Miguel & Gómez Muñoz, Gloria, 2020. "Energy poverty in Madrid: Data exploitation at the city and district level," Energy Policy, Elsevier, vol. 144(C).
    4. Coyne, Bryan & Denny, Eleanor, 2021. "Retrofit effectiveness: Evidence from a nationwide residential energy efficiency programme," Energy Policy, Elsevier, vol. 159(C).
    5. Pedro J. Zarco-Periñán & Irene M. Zarco-Soto & Fco. Javier Zarco-Soto, 2021. "Influence of the Population Density of Cities on Energy Consumption of Their Households," Sustainability, MDPI, vol. 13(14), pages 1-15, July.
    6. George M. Stavrakakis & Dimitris Al. Katsaprakakis & Markos Damasiotis, 2021. "Basic Principles, Most Common Computational Tools, and Capabilities for Building Energy and Urban Microclimate Simulations," Energies, MDPI, vol. 14(20), pages 1-41, October.
    7. Meng, Fanchao & Zhang, Lei & Ren, Guoyu & Zhang, Ruixue, 2023. "Impacts of UHI on variations in cooling loads in buildings during heatwaves: A case study of Beijing and Tianjin, China," Energy, Elsevier, vol. 273(C).
    8. Gabriele Battista & Emanuele de Lieto Vollaro & Luca Evangelisti & Roberto de Lieto Vollaro, 2022. "Urban Overheating Mitigation Strategies Opportunities: A Case Study of a Square in Rome (Italy)," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    9. Rakin Abrar & Showmitra Kumar Sarkar & Kashfia Tasnim Nishtha & Swapan Talukdar & Shahfahad & Atiqur Rahman & Abu Reza Md Towfiqul Islam & Amir Mosavi, 2022. "Assessing the Spatial Mapping of Heat Vulnerability under Urban Heat Island (UHI) Effect in the Dhaka Metropolitan Area," Sustainability, MDPI, vol. 14(9), pages 1-24, April.
    10. Chris Boulton & Claudia Baldwin & Tony Matthews & Silvia Tavares, 2023. "Environmental Design for Urban Cooling, Access, and Safety: A Novel Approach to Auditing Outdoor Areas in Residential Aged Care Facilities," Land, MDPI, vol. 12(2), pages 1-22, February.
    11. Fitsum Tariku & Afshin Gharib Mombeni, 2023. "ANN-Based Method for Urban Canopy Temperature Prediction and Building Energy Simulation with Urban Heat Island Effect in Consideration," Energies, MDPI, vol. 16(14), pages 1-23, July.
    12. Chi, Fang'ai & Xu, Liming & Pan, Jiajie & Wang, Ruonan & Tao, Yekang & Guo, Yuang & Peng, Changhai, 2020. "Prediction of the total day-round thermal load for residential buildings at various scales based on weather forecast data," Applied Energy, Elsevier, vol. 280(C).
    13. Ying Wang & Yin Ren & Xiaoman Zheng & Zhifeng Wu, 2024. "The Impact of Building and Green Space Combination on Urban Thermal Environment Based on Three-Dimensional Landscape Index," Sustainability, MDPI, vol. 17(1), pages 1-21, December.
    14. Wenliang Li, 2020. "Quantifying the Building Energy Dynamics of Manhattan, New York City, Using an Urban Building Energy Model and Localized Weather Data," Energies, MDPI, vol. 13(12), pages 1-22, June.
    15. Battista, Gabriele & de Lieto Vollaro, Emanuele & Ocłoń, Paweł & Vallati, Andrea, 2021. "Effect of mutual radiative exchange between the surfaces of a street canyon on the building thermal energy demand," Energy, Elsevier, vol. 226(C).
    16. Luis Godoy-Vaca & E. Catalina Vallejo-Coral & Javier Martínez-Gómez & Marco Orozco & Geovanna Villacreses, 2021. "Predicted Medium Vote Thermal Comfort Analysis Applying Energy Simulations with Phase Change Materials for Very Hot-Humid Climates in Social Housing in Ecuador," Sustainability, MDPI, vol. 13(3), pages 1-31, January.
    17. Yi Bao & Zhou Huang & Han Wang & Ganmin Yin & Xiao Zhou & Yong Gao, 2023. "High‐resolution quantification of building stock using multi‐source remote sensing imagery and deep learning," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 350-361, February.
    18. Farzad Hashemi & Parisa Najafian & Negar Salahi & Sedigheh Ghiasi & Ulrike Passe, 2025. "The Impact of the Urban Heat Island and Future Climate on Urban Building Energy Use in a Midwestern U.S. Neighborhood," Energies, MDPI, vol. 18(6), pages 1-29, March.
    19. Adilkhanova, Indira & Ngarambe, Jack & Yun, Geun Young, 2022. "Recent advances in black box and white-box models for urban heat island prediction: Implications of fusing the two methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    20. Moein Atri & Sahar Nedae-Tousi & Sina Shahab & Ebrahim Solgi, 2021. "The Effects of Thermal-Spatial Behaviours of Land Covers on Urban Heat Islands in Semi-Arid Climates," Sustainability, MDPI, vol. 13(24), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:5:p:1140-:d:1079800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.