IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i12p2077-d1535336.html
   My bibliography  Save this article

Salinity Effects on Soil Structure and Hydraulic Properties: Implications for Pedotransfer Functions in Coastal Areas

Author

Listed:
  • Xiao Zhang

    (Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
    These authors contributed equally to this work.)

  • Yutao Zuo

    (Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
    These authors contributed equally to this work.)

  • Tiejun Wang

    (Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
    Critical Zone Observatory of Bohai Coastal Region, Tianjin University, Tianjin 300072, China
    Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China)

  • Qiong Han

    (Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
    Critical Zone Observatory of Bohai Coastal Region, Tianjin University, Tianjin 300072, China)

Abstract

Understanding the effects of salinity on soil structure and hydraulic properties is critical for addressing environmental challenges in coastal saline and sodic areas. In this study, soil samples were collected from a coastal region in eastern China to investigate how salinity affected the soil structure and hydraulic properties based on lab experiments. A comprehensive soil dataset was also compiled from the experimental results to develop a salinity-based pedotransfer function (PTF-S) tailored to the coastal environment. The results showed that salinity significantly altered the soil aggregate size distribution and hydraulic properties. Higher salinity promoted the formation of larger aggregates (0.25–2 mm), particularly in silty clay soil. Salinity positively correlated with the saturated hydraulic conductivity (K s ) in sandy loam soil, regardless of the cation type (Na⁺ or Ca 2 ⁺). By comparison, Na + increased the K s of silty clay soil up to a certain threshold, while Ca 2 + enhanced the K s regardless of the soil texture. Increased salinity also reduced the soil water retention of sandy loam soil; however, Na + increased the soil water retention of silty clay soil and Ca 2 + had different effects depending on the suction levels. The newly developed PTF-S model, which included the electrical conductivity (EC) and cation exchange capacity (CEC), showed better predictions for the volumetric water content (R = 0.886 and RMSE = 0.057 cm 3 /cm 3 ) and log K s (R = 0.991 and RMSE = 0.073 mm/h) than the traditional model that excludes the salinity variables EC and CEC (PTF-N) (R = 0.839 and RMSE = 0.066 cm 3 /cm 3 for the volumetric water content, and R = 0.966 and RMSE = 0.140 mm/h for the log K s ). This study highlights the importance of developing salinity-based PTFs for addressing soil salinization challenges.

Suggested Citation

  • Xiao Zhang & Yutao Zuo & Tiejun Wang & Qiong Han, 2024. "Salinity Effects on Soil Structure and Hydraulic Properties: Implications for Pedotransfer Functions in Coastal Areas," Land, MDPI, vol. 13(12), pages 1-16, December.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:12:p:2077-:d:1535336
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/12/2077/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/12/2077/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, Jiaxia & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Jiang, Shufang & Zhang, Tibin, 2012. "Soil salinity management with drip irrigation and its effects on soil hydraulic properties in north China coastal saline soils," Agricultural Water Management, Elsevier, vol. 115(C), pages 10-19.
    2. Feki, Mouna & Ravazzani, Giovanni & Ceppi, Alessandro & Mancini, Marco, 2018. "Influence of soil hydraulic variability on soil moisture simulations and irrigation scheduling in a maize field," Agricultural Water Management, Elsevier, vol. 202(C), pages 183-194.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiulong & Kang, Yaohu & Wan, Shuqin & Chu, Linlin & Li, Xiaobin, 2015. "Chinese rose (Rosa chinensis) cultivation in Bohai Bay, China, using an improved drip irrigation method to reclaim heavy coastal saline soils," Agricultural Water Management, Elsevier, vol. 158(C), pages 99-111.
    2. Yongwei Liu & Zhenzhen Yang & Changxiong Zhu & Baogang Zhang & Hongna Li, 2023. "The Eco-Agricultural Industrial Chain: The Meaning, Content and Practices," IJERPH, MDPI, vol. 20(4), pages 1-12, February.
    3. Wang, Xiquan & Zhang, Hongyuan & Zhang, Zhizhong & Zhang, Chenping & Zhang, Kai & Pang, Huancheng & Bell, Stephen M. & Li, Yuyi & Chen, Ji, 2023. "Reinforced soil salinization with distance along the river: A case study of the Yellow River Basin," Agricultural Water Management, Elsevier, vol. 279(C).
    4. Saurabh Kumar & Richa Ojha, 2023. "Modeling Soil Hydraulic Properties Using Dynamic Variability of Soil Pore Size Distribution," Sustainability, MDPI, vol. 15(13), pages 1-26, June.
    5. Sun, Jiaxia & Kang, Yaohu & Wan, Shuqin, 2013. "Effects of an imbedded gravel–sand layer on reclamation of coastal saline soils under drip irrigation and on plant growth," Agricultural Water Management, Elsevier, vol. 123(C), pages 12-19.
    6. Xiuping Wang & Zhizhong Xue & Xuelin Lu & Yahui Liu & Guangming Liu & Zhe Wu, 2019. "Salt leaching of heavy coastal saline silty soil by controlling the soil matric potential," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 14(3), pages 132-137.
    7. Li, Xiaobin & Kang, Yaohu, 2020. "Agricultural utilization and vegetation establishment on saline-sodic soils using a water–salt regulation method for scheduled drip irrigation," Agricultural Water Management, Elsevier, vol. 231(C).
    8. Chen, Xiulong & Kang, Yaohu & Wan, Shuqin & Li, Xiaobin & Guo, Liping, 2015. "Influence of mulches on urban vegetation construction in coastal saline land under drip irrigation in North China," Agricultural Water Management, Elsevier, vol. 158(C), pages 145-155.
    9. Chaokun Li & Ye Yang & Hui Xi & Zhiwen Chen & Yingying Dong & Meiling Liu & Junsheng Liu & Wendong Wang, 2024. "Optimized Irrigation Strategies for Saline Soil Remediation in Agricultural Lands Under Water-Limited Conditions," Sustainability, MDPI, vol. 16(23), pages 1-13, November.
    10. Zhang, Chen & Li, Xiaobin & Kang, Yaohu & Wang, Xunming, 2019. "Salt leaching and response of Dianthus chinensis L. to saline water drip-irrigation in two coastal saline soils," Agricultural Water Management, Elsevier, vol. 218(C), pages 8-16.
    11. Zhang, Tibin & Dong, Qin’ge & Zhan, Xiaoyun & He, Jianqiang & Feng, Hao, 2019. "Moving salts in an impermeable saline-sodic soil with drip irrigation to permit wolfberry production," Agricultural Water Management, Elsevier, vol. 213(C), pages 636-645.
    12. Liu, Ziqi & Li, Kaiping & Xiong, Kangning & Li, Yuan & Wang, Jin & Sun, Jian & Cai, Lulu, 2021. "Effects of Zanthoxylum bungeanum planting on soil hydraulic properties and soil moisture in a karst area," Agricultural Water Management, Elsevier, vol. 257(C).
    13. Dong, Shide & Wan, Shuqin & Kang, Yaohu & Li, Xiaobin, 2021. "Establishing an ecological forest system of salt-tolerant plants in heavily saline wasteland using the drip-irrigation reclamation method," Agricultural Water Management, Elsevier, vol. 245(C).
    14. Yifu Zhang & Wancheng Wang & Wei Yuan & Ruihong Zhang & Xiaobo Xi, 2021. "Cattle Manure Application and Combined Straw Mulching Enhance Maize ( Zea mays L.) Growth and Water Use for Rain-Fed Cropping System of Coastal Saline Soils," Agriculture, MDPI, vol. 11(8), pages 1-14, August.
    15. Zhu, Pingzong & Zhang, Guanghui & Wang, Hongxiao & Zhang, Baojun & Liu, Yingna, 2021. "Soil moisture variations in response to precipitation properties and plant communities on steep gully slope on the Loess Plateau," Agricultural Water Management, Elsevier, vol. 256(C).
    16. Dong, Shide & Wang, Guangmei & Kang, Yaohu & Ma, Qian & Wan, Shuqin, 2022. "Soil water and salinity dynamics under the improved drip-irrigation scheduling for ecological restoration in the saline area of Yellow River basin," Agricultural Water Management, Elsevier, vol. 264(C).
    17. Dong, Shide & Wan, Shuqin & Kang, Yaohu & Li, Xiaobin, 2020. "Prospects of using drip irrigation for ecological conservation and reclaiming highly saline soils at the edge of Yinchuan Plain," Agricultural Water Management, Elsevier, vol. 239(C).
    18. Li, Xiaobin & Kang, Yaohu & Wan, Shuqin & Chen, Xiulong & Liu, Shiping & Xu, Jiachong, 2016. "Response of a salt-sensitive plant to processes of soil reclamation in two saline–sodic, coastal soils using drip irrigation with saline water," Agricultural Water Management, Elsevier, vol. 164(P2), pages 223-234.
    19. Wang, Ruoshui & Kang, Yaohu & Wan, Shuqin, 2015. "Effects of different drip irrigation regimes on saline–sodic soil nutrients and cotton yield in an arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 153(C), pages 1-8.
    20. Wang, Ruoshui & Wan, Shuqin & Sun, Jiaxia & Xiao, Huijie, 2018. "Soil salinity, sodicity and cotton yield parameters under different drip irrigation regimes during saline wasteland reclamation," Agricultural Water Management, Elsevier, vol. 209(C), pages 20-31.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:12:p:2077-:d:1535336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.