IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i10p1591-d1489316.html
   My bibliography  Save this article

Integrating Streetscape Images, Machine Learning, and Space Syntax to Enhance Walkability: A Case Study of Seongbuk District, Seoul

Author

Listed:
  • Zhongshan Huang

    (Graduate School of Techno Design (TED), Kookmin University, Seoul 02707, Republic of Korea)

  • Bin Wang

    (College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China)

  • Shixian Luo

    (School of Architecture, Southwest Jiaotong University, Chendu 611756, China)

  • Manqi Wang

    (Graduate School of Techno Design (TED), Kookmin University, Seoul 02707, Republic of Korea)

  • Jingjing Miao

    (Graduate School of Techno Design (TED), Kookmin University, Seoul 02707, Republic of Korea)

  • Qiyue Jia

    (Graduate School of Techno Design (TED), Kookmin University, Seoul 02707, Republic of Korea)

Abstract

As urbanization rapidly progresses, streets have transitioned from mere transportation corridors to crucial spaces for daily life and social interaction. While past research has examined the impact of physical street characteristics on walkability, there is still a lack of large-scale quantitative assessments. This study systematically evaluates street walkability in Seongbuk District, Seoul, through the integration of streetscape images, machine learning, and space syntax. The physical characteristics of streets were extracted and analyzed in conjunction with space syntax to assess street accessibility, leading to a combined analysis of walkability and accessibility. The results reveal that the central and western regions of Seongbuk District outperform the eastern regions in overall street performance. Additionally, the study identifies four distinct street types based on their spatial distribution: high accessibility–high overall score, high accessibility–low overall score, low accessibility–high overall score, and low accessibility–low overall score. The findings not only provide a scientific basis for street development in Seongbuk District but also offer valuable insights for assessing and enhancing walkability in cities globally.

Suggested Citation

  • Zhongshan Huang & Bin Wang & Shixian Luo & Manqi Wang & Jingjing Miao & Qiyue Jia, 2024. "Integrating Streetscape Images, Machine Learning, and Space Syntax to Enhance Walkability: A Case Study of Seongbuk District, Seoul," Land, MDPI, vol. 13(10), pages 1-20, September.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:10:p:1591-:d:1489316
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/10/1591/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/10/1591/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Samia Sharmin & Md. Kamruzzaman, 2018. "Meta-analysis of the relationships between space syntax measures and pedestrian movement," Transport Reviews, Taylor & Francis Journals, vol. 38(4), pages 524-550, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedro Reyes-Norambuena & Javier Martinez-Torres & Alireza Nemati & Sarfaraz Hashemkhani Zolfani & Jurgita Antucheviciene, 2024. "Towards Sustainable Urban Futures: Integrating a Novel Grey Multi-Criteria Decision Making Model for Optimal Pedestrian Walkway Site Selection," Sustainability, MDPI, vol. 16(11), pages 1-24, May.
    2. Sharmin, Samia & Kamruzzaman, Md. & Haque, Md Mazharul, 2020. "The impact of topological properties of built environment on children independent mobility: A comparative study between discretionary vs. nondiscretionary trips in Dhaka," Journal of Transport Geography, Elsevier, vol. 83(C).
    3. Dorsa Alipour & Hussein Dia, 2023. "A Systematic Review of the Role of Land Use, Transport, and Energy-Environment Integration in Shaping Sustainable Cities," Sustainability, MDPI, vol. 15(8), pages 1-29, April.
    4. Lamprecht Mariusz, 2022. "Space syntax as a socio-economic approach: a review of potentials in the polish context," Miscellanea Geographica. Regional Studies on Development, Sciendo, vol. 26(1), pages 5-14, January.
    5. Aston, Laura & Currie, Graham & Kamruzzaman, Md. & Delbosc, Alexa & Teller, David, 2020. "Study design impacts on built environment and transit use research," Journal of Transport Geography, Elsevier, vol. 82(C).
    6. Kimon Krenz & Ashley Dhanani & Rosemary R. C. McEachan & Kuldeep Sohal & John Wright & Laura Vaughan, 2023. "Linking the Urban Environment and Health: An Innovative Methodology for Measuring Individual-Level Environmental Exposures," IJERPH, MDPI, vol. 20(3), pages 1-22, January.
    7. Avital Angel & Achituv Cohen & Sagi Dalyot & Pnina Plaut, 2023. "Impact of COVID-19 policies on pedestrian traffic and walking patterns," Environment and Planning B, , vol. 50(5), pages 1178-1193, June.
    8. Lingzhu Zhang & Alain JF Chiaradia, 2022. "Walking in the cities without ground, how 3d complex network volumetrics improve analysis," Environment and Planning B, , vol. 49(7), pages 1857-1874, September.
    9. Isabelle Soares & Claudia Yamu & Gerd Weitkamp, 2020. "The Relationship between the Spatial Configuration and the Fourth Sustainable Dimension Creativity in University Campuses: The Case Study of Zernike Campus, Groningen, The Netherlands," Sustainability, MDPI, vol. 12(21), pages 1-21, November.
    10. Xuefeng Ma & Jiaxin Tan & Jiekuan Zhang, 2022. "Spatial–Temporal Correlation between the Tourist Hotel Industry and Town Spatial Morphology: The Case of Phoenix Ancient Town, China," Sustainability, MDPI, vol. 14(17), pages 1-13, August.
    11. Shatu, Farjana & Yigitcanlar, Tan & Bunker, Jonathan, 2019. "Shortest path distance vs. least directional change: Empirical testing of space syntax and geographic theories concerning pedestrian route choice behaviour," Journal of Transport Geography, Elsevier, vol. 74(C), pages 37-52.
    12. Mona Jabbari & Fernando Fonseca & Rui Ramos, 2021. "Accessibility and Connectivity Criteria for Assessing Walkability: An Application in Qazvin, Iran," Sustainability, MDPI, vol. 13(7), pages 1-18, March.
    13. Nir Kaplan & Itzhak Omer, 2022. "Multiscale Accessibility—A New Perspective of Space Structuration," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    14. Xin Li & Yongsheng Qian & Junwei Zeng & Xuting Wei & Xiaoping Guang, 2021. "The Influence of Strip-City Street Network Structure on Spatial Vitality: Case Studies in Lanzhou, China," Land, MDPI, vol. 10(11), pages 1-17, October.
    15. Yeh, Anthony Gar-On & Zhong, Teng, 2021. "Polygonization method for automatic generation of indoor and outdoor pedestrian navigation path for smart city," Journal of Transport Geography, Elsevier, vol. 96(C).
    16. Lingjun Tang & Yu Lin & Sijia Li & Sheng Li & Jingyi Li & Fu Ren & Chao Wu, 2018. "Exploring the Influence of Urban Form on Urban Vibrancy in Shenzhen Based on Mobile Phone Data," Sustainability, MDPI, vol. 10(12), pages 1-21, December.
    17. Renata Walczak & Krzysztof Koszewski & Robert Olszewski & Krzysztof Ejsmont & Anikó Kálmán, 2023. "Acceptance of IoT Edge-Computing-Based Sensors in Smart Cities for Universal Design Purposes," Energies, MDPI, vol. 16(3), pages 1-22, January.
    18. Shatu, Farjana & Yigitcanlar, Tan & Bunker, Jonathan, 2019. "Objective vs. subjective measures of street environments in pedestrian route choice behaviour: Discrepancy and correlates of non-concordance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 1-23.
    19. Sugie Lee & Chisun Yoo & Kyung Wook Seo, 2020. "Determinant Factors of Pedestrian Volume in Different Land-Use Zones: Combining Space Syntax Metrics with GIS-Based Built-Environment Measures," Sustainability, MDPI, vol. 12(20), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:10:p:1591-:d:1489316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.