IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i6p1126-d1155296.html
   My bibliography  Save this article

The Characteristics of Soil C, N and P and Stoichiometric Ratios as Affected by Land-Use in a Karst Area, Southwest China

Author

Listed:
  • Yang Ma

    (Karst Dynamics Laboratory, MNR and Guangxi, Institute of Karst Geology, CAGS, Guilin 541004, China)

  • Chunlai Zhang

    (Karst Dynamics Laboratory, MNR and Guangxi, Institute of Karst Geology, CAGS, Guilin 541004, China
    International Research Centre on Karst, Under the Auspices of UNESCO, Guilin 541004, China)

  • Hui Yang

    (Karst Dynamics Laboratory, MNR and Guangxi, Institute of Karst Geology, CAGS, Guilin 541004, China
    International Research Centre on Karst, Under the Auspices of UNESCO, Guilin 541004, China)

  • Yikai Xu

    (Zhengyuan Digital City Construction Co., Ltd., Yantai 264600, China)

  • Yan Chen

    (Karst Dynamics Laboratory, MNR and Guangxi, Institute of Karst Geology, CAGS, Guilin 541004, China
    Institute of Advanced Studies, China University of Geosciences, Wuhan 430074, China)

  • Jing Ning

    (Karst Dynamics Laboratory, MNR and Guangxi, Institute of Karst Geology, CAGS, Guilin 541004, China
    Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China)

Abstract

Chemometric analysis is often used as an effective indicator of the supply capacity of nutrients in soil–plant systems and their biogeochemical cycles. Understanding ecological stoichiometric characteristics of C, N and P in soils under various land uses is crucial to guide ecological restoration and agricultural cultivation in karst rocky desertification region. However, data on ecological stoichiometry at different land uses in karst areas is limited. This study aimed to evaluate the effects of different land uses on soil ecological stoichiometric ratios and further identify the factors that influence soil ecological stoichiometric ratios. The topsoil from forest, shrub and cultivated land (paddy field and dry land) both in a karst area and non-karst area (as a reference) of Mashan County was sampled to investigate the spatial variance of the ecological stoichiometric characteristics of C, N and P under different land uses. The results show that: (1) Land-use types significantly determined the spatial heterogeneity of soil ecological stoichiometry in karst areas. (2) Soil organic carbon (SOC) was not significantly different between shrubs in the karst area and forests in the non-karst area ( p = 0.595), but there were virtual differences in total nitrogen (TN), total phosphorus (TP), C:N, C:P and N:P between shrubs in the karst area and forests in the non-karst area ( p < 0.01). (3) The contents of SOC, TN, and C:P, N:P in the study area were all generally higher in forests than those in cultivated land, and the content of TP was lower in forests than cultivated land, while C:N in cultivated land was higher than in shrubs in karst areas, and C:N was higher in forests than in cultivated land in non-karst areas. (4) Available nitrogen (AvN) was the main factor influencing stoichiometry in shrubs in karst areas, while pH, AvN, available phosphorus and elevation were the main factors in forests in non-karst areas, indicating that these factors significantly affect the soil ecological stoichiometric ratio during land-use changes. This study helps to understand the variations in soil ecological stoichiometric ratios under land-use changes. It provides guidance for the sustainable management of revegetation in karst regions in southwest China.

Suggested Citation

  • Yang Ma & Chunlai Zhang & Hui Yang & Yikai Xu & Yan Chen & Jing Ning, 2023. "The Characteristics of Soil C, N and P and Stoichiometric Ratios as Affected by Land-Use in a Karst Area, Southwest China," Land, MDPI, vol. 12(6), pages 1-17, May.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:6:p:1126-:d:1155296
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/6/1126/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/6/1126/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. James J. Elser & William F. Fagan & Robert F. Denno & Dean R. Dobberfuhl & Ayoola Folarin & Andrea Huberty & Sebastian Interlandi & Susan S. Kilham & Edward McCauley & Kimberly L. Schulz & Evan H. Sie, 2000. "Nutritional constraints in terrestrial and freshwater food webs," Nature, Nature, vol. 408(6812), pages 578-580, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hailiang Li & M. James C. Crabbe & Haikui Chen, 2020. "History and Trends in Ecological Stoichiometry Research from 1992 to 2019: A Scientometric Analysis," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    2. Law, Tony & Zhang, Weitao & Zhao, Jingyang & Arhonditsis, George B., 2009. "Structural changes in lake functioning induced from nutrient loading and climate variability," Ecological Modelling, Elsevier, vol. 220(7), pages 979-997.
    3. Stech, Harlan & Peckham, Bruce & Pastor, John, 2012. "Enrichment in a general class of stoichiometric producer–consumer population growth models," Theoretical Population Biology, Elsevier, vol. 81(3), pages 210-222.
    4. Zhengkun Hu & Manuel Delgado-Baquerizo & Nicolas Fanin & Xiaoyun Chen & Yan Zhou & Guozhen Du & Feng Hu & Lin Jiang & Shuijin Hu & Manqiang Liu, 2024. "Nutrient-induced acidification modulates soil biodiversity-function relationships," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Marcin Dębowski & Marta Kisielewska & Joanna Kazimierowicz & Aleksandra Rudnicka & Magda Dudek & Zdzisława Romanowska-Duda & Marcin Zieliński, 2020. "The effects of Microalgae Biomass Co-Substrate on Biogas Production from the Common Agricultural Biogas Plants Feedstock," Energies, MDPI, vol. 13(9), pages 1-13, May.
    6. Gang Hu & Xiaoxing Huang & Siyu Chen & Cong Hu & Chaofang Zhong & Chaohao Xu & Zhonghua Zhang, 2024. "Biotic and Abiotic Factors Affecting Soil C, N, P and Their Stoichiometries under Different Land-Use Types in a Karst Agricultural Watershed, China," Agriculture, MDPI, vol. 14(7), pages 1-19, July.
    7. Luyun Chen & Yongheng Gao, 2022. "Global Climate Change Effects on Soil Microbial Biomass Stoichiometry in Alpine Ecosystems," Land, MDPI, vol. 11(10), pages 1-16, September.
    8. Josep Penuelas & Tamás Krisztin & Michael Obersteiner & Florian Huber & Hannes Winner & Ivan A. Janssens & Philippe Ciais & Jordi Sardans, 2020. "Country-Level Relationships of the Human Intake of N and P, Animal and Vegetable Food, and Alcoholic Beverages with Cancer and Life Expectancy," IJERPH, MDPI, vol. 17(19), pages 1-15, October.
    9. Zhiwei Cao & Xi Fang & Wenhua Xiang & Pifeng Lei & Changhui Peng, 2020. "The Vertical Differences in the Change Rates and Controlling Factors of Soil Organic Carbon and Total Nitrogen along Vegetation Restoration in a Subtropical Area of China," Sustainability, MDPI, vol. 12(16), pages 1-17, August.
    10. Jie Zhang & Yaojun Liu & Taihui Zheng & Xiaomin Zhao & Hongguang Liu & Yongfen Zhang, 2021. "Nutrient and Stoichiometric Characteristics of Aggregates in a Sloping Farmland Area under Different Tillage Practices," Sustainability, MDPI, vol. 13(2), pages 1-19, January.
    11. Elser, James J. & Loladze, Irakli & Peace, Angela L. & Kuang, Yang, 2012. "Lotka re-loaded: Modeling trophic interactions under stoichiometric constraints," Ecological Modelling, Elsevier, vol. 245(C), pages 3-11.
    12. Jingyun Yin & Jihong Xia & Zhichang Xia & Wangwei Cai & Zewen Liu & Kejun Xu & Yue Wang & Rongzhen Zhang & Xu Dong, 2022. "Temporal Variation and Spatial Distribution in the Water Environment Helps Explain Seasonal Dynamics of Zooplankton in River-Type Reservoir," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    13. Mengdie Feng & Dengyu Zhang & Binghui He & Ke Liang & Peidong Xi & Yunfei Bi & Yingying Huang & Dongxin Liu & Tianyang Li, 2021. "Characteristics of Soil C, N, and P Stoichiometry as Affected by Land Use and Slope Position in the Three Gorges Reservoir Area, Southwest China," Sustainability, MDPI, vol. 13(17), pages 1-13, September.
    14. Xiaobo Huang & Xuedong Lang & Shuaifeng Li & Wande Liu & Jianrong Su, 2022. "Leaf Carbon, Nitrogen and Phosphorus Stoichiometry in a Pinus yunnanensis Forest in Southwest China," Sustainability, MDPI, vol. 14(10), pages 1-10, May.
    15. Tijani, Hamzat & Abdullah, Norhayati & Yuzir, Ali, 2015. "Integration of microalgae biomass in biomethanation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1610-1622.
    16. Prado, Patricia & Ibáñez, Carles & Caiola, Nuno & Reyes, Enrique, 2013. "Evaluation of seasonal variability in the food-web properties of coastal lagoons subjected to contrasting salinity gradients using network analyses," Ecological Modelling, Elsevier, vol. 265(C), pages 180-193.
    17. Guanghua Jing & Tianming Hu & Jian Liu & Jimin Cheng & Wei Li, 2020. "Biomass Estimation, Nutrient Accumulation, and Stoichiometric Characteristics of Dominant Tree Species in the Semi-Arid Region on the Loess Plateau of China," Sustainability, MDPI, vol. 12(1), pages 1-16, January.
    18. Jankowska, Ewelina & Sahu, Ashish K. & Oleskowicz-Popiel, Piotr, 2017. "Biogas from microalgae: Review on microalgae's cultivation, harvesting and pretreatment for anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 692-709.
    19. Peacor, Scott D. & Allesina, Stefano & Riolo, Rick L. & Hunter, Tim S., 2007. "A new computational system, DOVE (Digital Organisms in a Virtual Ecosystem), to study phenotypic plasticity and its effects in food webs," Ecological Modelling, Elsevier, vol. 205(1), pages 13-28.
    20. Xiaolong Zhang & Tianyu Guan & Jihua Zhou & Wentao Cai & Nannan Gao & Hui Du & Lianhe Jiang & Liming Lai & Yuanrun Zheng, 2018. "Community Characteristics and Leaf Stoichiometric Traits of Desert Ecosystems Regulated by Precipitation and Soil in an Arid Area of China," IJERPH, MDPI, vol. 15(1), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:6:p:1126-:d:1155296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.