IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v265y2013icp180-193.html
   My bibliography  Save this article

Evaluation of seasonal variability in the food-web properties of coastal lagoons subjected to contrasting salinity gradients using network analyses

Author

Listed:
  • Prado, Patricia
  • Ibáñez, Carles
  • Caiola, Nuno
  • Reyes, Enrique

Abstract

Salinity is a major factor influencing the abundance and composition of species and the overall organization of natural communities but its relevance in the maintenance of important functional processes such as energy flows, trophic structure, resilience and stability is lesser known. Estuarine communities from coastal lagoons in the Ebro Delta (Tancada, Encanyissada and Clot; Catalonia, NW Mediterranean) are subjected to anthropic variability in their salinity regime and offer a suitable setting for investigating differences in ecosystem functioning. To this aim, we conducted seasonal sampling of estuarine communities (from phytoplankton to birds) and we describe the structural and functional changes in carbon flows and trophic relationships using ecological network analysis (ENA). Results showed that summer biomass of Ruppia cirrhosa (annual species) in the two higher salinity lagoons is sufficient to sustain fish and invertebrate communities, whereas in winter they become plant-limited and enhanced detrital consumption is necessary for balancing the trophic models. In contrast, consumers in the low salinity lagoon dominated by Potamogeton pectinatus (pseudo-annual species) were not limited by plant abundance and seasonal differences in NPP:biomass ratios, total system troughoutput (TST), and ascendancy were the lowest, suggesting more stable functioning. The biomass of phytoplankton was low compared to that of benthic macrophytes, but accounted for similar rates of primary production (from 0.21 to 0.54gCm−2d−1 and from 0.01 to 1.96gCm−2d−1, respectively) and contributions to the TST (from 7.2 to 33.9% and from 0.6 to 39.3%, respectively). Therefore, seasonal variability in ecosystem fluxes was both controlled by the influence of salinity on plant species and by fluctuations in the abundance of phytoplankton. The combined effect of nutrients and salinity was found to have a strong influence on the ratio between pathways originated from phytoplankton and from benthic producers (R=0.99, p< 0.05). Overall, our results suggest that plant persistence could help to stabilize ecosystem functioning by providing a permanent source of food and habitat to consumers, and by removing some nutrients from the water column.

Suggested Citation

  • Prado, Patricia & Ibáñez, Carles & Caiola, Nuno & Reyes, Enrique, 2013. "Evaluation of seasonal variability in the food-web properties of coastal lagoons subjected to contrasting salinity gradients using network analyses," Ecological Modelling, Elsevier, vol. 265(C), pages 180-193.
  • Handle: RePEc:eee:ecomod:v:265:y:2013:i:c:p:180-193
    DOI: 10.1016/j.ecolmodel.2013.05.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013002846
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.05.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Han, Jeong-Ho & Kumar, Hema K. & Lee, Jae Hoon & Zhang, Chang-Ik & Kim, Se-Wha & Lee, Jung-Ho & Kim, Sang Don & An, Kwang-Guk, 2011. "Integrative trophic network assessments of a lentic ecosystem by key ecological approaches of water chemistry, trophic guilds, and ecosystem health assessments along with an ECOPATH model," Ecological Modelling, Elsevier, vol. 222(19), pages 3457-3472.
    2. Liu, Qi-Gen & Chen, Yong & Li, Jia-Le & Chen, Li-Qiao, 2007. "The food web structure and ecosystem properties of a filter-feeding carps dominated deep reservoir ecosystem," Ecological Modelling, Elsevier, vol. 203(3), pages 279-289.
    3. Christensen, V. & Pauly, D. (eds.), 1993. "Trophic models of aquatic ecosystems," Monographs, The WorldFish Center, number 8432, April.
    4. James J. Elser & William F. Fagan & Robert F. Denno & Dean R. Dobberfuhl & Ayoola Folarin & Andrea Huberty & Sebastian Interlandi & Susan S. Kilham & Edward McCauley & Kimberly L. Schulz & Evan H. Sie, 2000. "Nutritional constraints in terrestrial and freshwater food webs," Nature, Nature, vol. 408(6812), pages 578-580, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chiara Paoli & Paolo Povero & Ilaria Rigo & Giulia Dapueto & Rachele Bordoni & Paolo Vassallo, 2022. "Two Sides of the Same Coin: A Theoretical Framework for Strong Sustainability in Marine Protected Areas," Sustainability, MDPI, vol. 14(10), pages 1-20, May.
    2. Paoli, C. & Povero, P. & Burgos, E. & Dapueto, G. & Fanciulli, G. & Massa, F. & Scarpellini, P. & Vassallo, P., 2018. "Natural capital and environmental flows assessment in marine protected areas: The case study of Liguria region (NW Mediterranean Sea)," Ecological Modelling, Elsevier, vol. 368(C), pages 121-135.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Peiqiao & Hu, Menghong & Hu, Zhongjun & Liu, Qigen & Wu, Zhen, 2012. "Modeling trophic structure and energy flows in a typical macrophyte dominated shallow lake using the mass balanced model," Ecological Modelling, Elsevier, vol. 233(C), pages 26-30.
    2. Shan, Kun & Li, Lin & Wang, Xiaoxiao & Wu, Yanlong & Hu, Lili & Yu, Gongliang & Song, Lirong, 2014. "Modelling ecosystem structure and trophic interactions in a typical cyanobacterial bloom-dominated shallow Lake Dianchi, China," Ecological Modelling, Elsevier, vol. 291(C), pages 82-95.
    3. Han, Jeong-Ho & Kumar, Hema K. & Lee, Jae Hoon & Zhang, Chang-Ik & Kim, Se-Wha & Lee, Jung-Ho & Kim, Sang Don & An, Kwang-Guk, 2011. "Integrative trophic network assessments of a lentic ecosystem by key ecological approaches of water chemistry, trophic guilds, and ecosystem health assessments along with an ECOPATH model," Ecological Modelling, Elsevier, vol. 222(19), pages 3457-3472.
    4. Ortiz, Marco & Berrios, Fernando & Campos, Leonardo & Uribe, Roberto & Ramirez, Alejandro & Hermosillo-Núñez, Brenda & González, Jorge & Rodriguez-Zaragoza, Fabián, 2015. "Mass balanced trophic models and short-term dynamical simulations for benthic ecological systems of Mejillones and Antofagasta bays (SE Pacific): Comparative network structure and assessment of human ," Ecological Modelling, Elsevier, vol. 309, pages 153-162.
    5. Chea, Ratha & Guo, Chuanbo & Grenouillet, Gaël & Lek, Sovan, 2016. "Toward an ecological understanding of a flood-pulse system lake in a tropical ecosystem: Food web structure and ecosystem health," Ecological Modelling, Elsevier, vol. 323(C), pages 1-11.
    6. Hossain, Md. Monir & Matsuishi, Takashi & Arhonditsis, George, 2010. "Elucidation of ecosystem attributes of an oligotrophic lake in Hokkaido, Japan, using Ecopath with Ecosim (EwE)," Ecological Modelling, Elsevier, vol. 221(13), pages 1717-1730.
    7. Duan, L.J. & Li, S.Y. & Liu, Y. & Moreau, J. & Christensen, V., 2009. "Modeling changes in the coastal ecosystem of the Pearl River Estuary from 1981 to 1998," Ecological Modelling, Elsevier, vol. 220(20), pages 2802-2818.
    8. Milessi, Andrés C. & Danilo, Calliari & Laura, Rodríguez-Graña & Daniel, Conde & Javier, Sellanes & Rodríguez-Gallego, Lorena, 2010. "Trophic mass-balance model of a subtropical coastal lagoon, including a comparison with a stable isotope analysis of the food-web," Ecological Modelling, Elsevier, vol. 221(24), pages 2859-2869.
    9. Hailiang Li & M. James C. Crabbe & Haikui Chen, 2020. "History and Trends in Ecological Stoichiometry Research from 1992 to 2019: A Scientometric Analysis," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    10. Moreau, J. & Palomares, M.L.D. & Torres, F.S.B., Jr. & Pauly, D., 1995. "Atlas demographique des populations de poissons d'eau douce d'Afrique," Monographs, The WorldFish Center, number 10441, April.
    11. Booth, Shawn & Walters, William J & Steenbeek, Jeroen & Christensen, Villy & Charmasson, Sabine, 2020. "An Ecopath with Ecosim model for the Pacific coast of eastern Japan: Describing the marine environment and its fisheries prior to the Great East Japan earthquake," Ecological Modelling, Elsevier, vol. 428(C).
    12. Law, Tony & Zhang, Weitao & Zhao, Jingyang & Arhonditsis, George B., 2009. "Structural changes in lake functioning induced from nutrient loading and climate variability," Ecological Modelling, Elsevier, vol. 220(7), pages 979-997.
    13. Díaz López, Bruno & Bunke, Mandy & Bernal Shirai, Julia Andrea, 2008. "Marine aquaculture off Sardinia Island (Italy): Ecosystem effects evaluated through a trophic mass-balance model," Ecological Modelling, Elsevier, vol. 212(3), pages 292-303.
    14. Rochette, S. & Lobry, J. & Lepage, M. & Boët, Ph., 2009. "Dealing with uncertainty in qualitative models with a semi-quantitative approach based on simulations. Application to the Gironde estuarine food web (France)," Ecological Modelling, Elsevier, vol. 220(2), pages 122-132.
    15. Christensen, Villy & de la Puente, Santiago & Sueiro, Juan Carlos & Steenbeek, Jeroen & Majluf, Patricia, 2014. "Valuing seafood: The Peruvian fisheries sector," Marine Policy, Elsevier, vol. 44(C), pages 302-311.
    16. Stech, Harlan & Peckham, Bruce & Pastor, John, 2012. "Enrichment in a general class of stoichiometric producer–consumer population growth models," Theoretical Population Biology, Elsevier, vol. 81(3), pages 210-222.
    17. Tesfaye, Gashaw & Wolff, Matthias, 2018. "Modeling trophic interactions and the impact of an introduced exotic carp species in the Rift Valley Lake Koka, Ethiopia," Ecological Modelling, Elsevier, vol. 378(C), pages 26-36.
    18. Zhengkun Hu & Manuel Delgado-Baquerizo & Nicolas Fanin & Xiaoyun Chen & Yan Zhou & Guozhen Du & Feng Hu & Lin Jiang & Shuijin Hu & Manqiang Liu, 2024. "Nutrient-induced acidification modulates soil biodiversity-function relationships," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Fourriére, Manon & Alvarado, Juan José & Cortés, Jorge & Taylor, Marc H. & Ayala-Bocos, Arturo & Azofeifa-Solano, Juan Carlos & Arauz, Randall & Heidemeyer, Maike & López-Garro, Andrés & Zanella, Ilen, 2019. "Energy flow structure and role of keystone groups in shallow water environments in Isla del Coco, Costa Rica, Eastern Tropical Pacific," Ecological Modelling, Elsevier, vol. 396(C), pages 74-85.
    20. Rosas-Luis, R. & Salinas-Zavala, C.A. & Koch, V. & Luna, P. Del Monte & Morales-Zárate, M.V., 2008. "Importance of jumbo squid Dosidicus gigas (Orbigny, 1835) in the pelagic ecosystem of the central Gulf of California," Ecological Modelling, Elsevier, vol. 218(1), pages 149-161.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:265:y:2013:i:c:p:180-193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.