IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v245y2012icp3-11.html
   My bibliography  Save this article

Lotka re-loaded: Modeling trophic interactions under stoichiometric constraints

Author

Listed:
  • Elser, James J.
  • Loladze, Irakli
  • Peace, Angela L.
  • Kuang, Yang

Abstract

Nearly a century ago A.J. Lotka provided fundamental formulations for population modeling; less appreciated are his explorations of the underlying material (elemental) basis of life and its implications for ecology and evolution. This paper describes recent developments in ecological and biological stoichiometry that unify these aspects of Lotka's work. Stoichiometrically explicit versions of the Lotka–Volterra equations capture key missing aspects of food web interactions, such as the effects of food quality and nutrient recycling feedbacks, and encompass a richer, and potentially more realistic, set of dynamics than non-stoichiometric models. These stoichiometric models are now being further extended to include the recently discovered effects of excess dietary nutrient content on consumer performance. The multi-dimensional capacity of stoichiometric models is likely to be of particular value given the pressing need to anticipate the ecological effects of globally dynamic perturbations of multiple chemical elements (e.g. C, N, and P) due to human actions.

Suggested Citation

  • Elser, James J. & Loladze, Irakli & Peace, Angela L. & Kuang, Yang, 2012. "Lotka re-loaded: Modeling trophic interactions under stoichiometric constraints," Ecological Modelling, Elsevier, vol. 245(C), pages 3-11.
  • Handle: RePEc:eee:ecomod:v:245:y:2012:i:c:p:3-11
    DOI: 10.1016/j.ecolmodel.2012.02.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012000749
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.02.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mulder, Kenneth & Bowden, William Breck, 2007. "Organismal stoichiometry and the adaptive advantage of variable nutrient use and production efficiency in Daphnia," Ecological Modelling, Elsevier, vol. 202(3), pages 427-440.
    2. James J. Elser & William F. Fagan & Robert F. Denno & Dean R. Dobberfuhl & Ayoola Folarin & Andrea Huberty & Sebastian Interlandi & Susan S. Kilham & Edward McCauley & Kimberly L. Schulz & Evan H. Sie, 2000. "Nutritional constraints in terrestrial and freshwater food webs," Nature, Nature, vol. 408(6812), pages 578-580, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chertov, Oleg & Komarov, Alexander & Shaw, Cindy & Bykhovets, Sergey & Frolov, Pavel & Shanin, Vladimir & Grabarnik, Pavel & Priputina, Irina & Zubkova, Elena & Shashkov, Maxim, 2017. "Romul_Hum—A model of soil organic matter formation coupling with soil biota activity. II. Parameterisation of the soil food web biota activity," Ecological Modelling, Elsevier, vol. 345(C), pages 125-139.
    2. Peace, Angela, 2015. "Effects of light, nutrients, and food chain length on trophic efficiencies in simple stoichiometric aquatic food chain models," Ecological Modelling, Elsevier, vol. 312(C), pages 125-135.
    3. Komarov, Alexander & Chertov, Oleg & Bykhovets, Sergey & Shaw, Cindy & Nadporozhskaya, Marina & Frolov, Pavel & Shashkov, Maxim & Shanin, Vladimir & Grabarnik, Pavel & Priputina, Irina & Zubkova, Elen, 2017. "Romul_Hum model of soil organic matter formation coupled with soil biota activity. I. Problem formulation, model description, and testing," Ecological Modelling, Elsevier, vol. 345(C), pages 113-124.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hailiang Li & M. James C. Crabbe & Haikui Chen, 2020. "History and Trends in Ecological Stoichiometry Research from 1992 to 2019: A Scientometric Analysis," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    2. Law, Tony & Zhang, Weitao & Zhao, Jingyang & Arhonditsis, George B., 2009. "Structural changes in lake functioning induced from nutrient loading and climate variability," Ecological Modelling, Elsevier, vol. 220(7), pages 979-997.
    3. Stech, Harlan & Peckham, Bruce & Pastor, John, 2012. "Enrichment in a general class of stoichiometric producer–consumer population growth models," Theoretical Population Biology, Elsevier, vol. 81(3), pages 210-222.
    4. Wang, Hao & Lu, Zexian & Raghavan, Aditya, 2018. "Weak dynamical threshold for the “strict homeostasis” assumption in ecological stoichiometry," Ecological Modelling, Elsevier, vol. 384(C), pages 233-240.
    5. Zhengkun Hu & Manuel Delgado-Baquerizo & Nicolas Fanin & Xiaoyun Chen & Yan Zhou & Guozhen Du & Feng Hu & Lin Jiang & Shuijin Hu & Manqiang Liu, 2024. "Nutrient-induced acidification modulates soil biodiversity-function relationships," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Marcin Dębowski & Marta Kisielewska & Joanna Kazimierowicz & Aleksandra Rudnicka & Magda Dudek & Zdzisława Romanowska-Duda & Marcin Zieliński, 2020. "The effects of Microalgae Biomass Co-Substrate on Biogas Production from the Common Agricultural Biogas Plants Feedstock," Energies, MDPI, vol. 13(9), pages 1-13, May.
    7. Wang, Hao & Sterner, Robert W. & Elser, James J., 2012. "On the “strict homeostasis” assumption in ecological stoichiometry," Ecological Modelling, Elsevier, vol. 243(C), pages 81-88.
    8. Yang Ma & Chunlai Zhang & Hui Yang & Yikai Xu & Yan Chen & Jing Ning, 2023. "The Characteristics of Soil C, N and P and Stoichiometric Ratios as Affected by Land-Use in a Karst Area, Southwest China," Land, MDPI, vol. 12(6), pages 1-17, May.
    9. Gang Hu & Xiaoxing Huang & Siyu Chen & Cong Hu & Chaofang Zhong & Chaohao Xu & Zhonghua Zhang, 2024. "Biotic and Abiotic Factors Affecting Soil C, N, P and Their Stoichiometries under Different Land-Use Types in a Karst Agricultural Watershed, China," Agriculture, MDPI, vol. 14(7), pages 1-18, July.
    10. Luyun Chen & Yongheng Gao, 2022. "Global Climate Change Effects on Soil Microbial Biomass Stoichiometry in Alpine Ecosystems," Land, MDPI, vol. 11(10), pages 1-16, September.
    11. Josep Penuelas & Tamás Krisztin & Michael Obersteiner & Florian Huber & Hannes Winner & Ivan A. Janssens & Philippe Ciais & Jordi Sardans, 2020. "Country-Level Relationships of the Human Intake of N and P, Animal and Vegetable Food, and Alcoholic Beverages with Cancer and Life Expectancy," IJERPH, MDPI, vol. 17(19), pages 1-15, October.
    12. Mulder, Kenneth, 2007. "Modeling the dynamics of nutrient limited consumer populations using constant elasticity production functions," Ecological Modelling, Elsevier, vol. 207(2), pages 319-326.
    13. Zhiwei Cao & Xi Fang & Wenhua Xiang & Pifeng Lei & Changhui Peng, 2020. "The Vertical Differences in the Change Rates and Controlling Factors of Soil Organic Carbon and Total Nitrogen along Vegetation Restoration in a Subtropical Area of China," Sustainability, MDPI, vol. 12(16), pages 1-17, August.
    14. Jie Zhang & Yaojun Liu & Taihui Zheng & Xiaomin Zhao & Hongguang Liu & Yongfen Zhang, 2021. "Nutrient and Stoichiometric Characteristics of Aggregates in a Sloping Farmland Area under Different Tillage Practices," Sustainability, MDPI, vol. 13(2), pages 1-19, January.
    15. Cédric L Meunier & Arne M Malzahn & Maarten Boersma, 2014. "A New Approach to Homeostatic Regulation: Towards a Unified View of Physiological and Ecological Concepts," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-7, September.
    16. Perhar, Gurbir & Arhonditsis, George B., 2009. "The effects of seston food quality on planktonic food web patterns," Ecological Modelling, Elsevier, vol. 220(6), pages 805-820.
    17. Jingyun Yin & Jihong Xia & Zhichang Xia & Wangwei Cai & Zewen Liu & Kejun Xu & Yue Wang & Rongzhen Zhang & Xu Dong, 2022. "Temporal Variation and Spatial Distribution in the Water Environment Helps Explain Seasonal Dynamics of Zooplankton in River-Type Reservoir," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    18. Mengdie Feng & Dengyu Zhang & Binghui He & Ke Liang & Peidong Xi & Yunfei Bi & Yingying Huang & Dongxin Liu & Tianyang Li, 2021. "Characteristics of Soil C, N, and P Stoichiometry as Affected by Land Use and Slope Position in the Three Gorges Reservoir Area, Southwest China," Sustainability, MDPI, vol. 13(17), pages 1-13, September.
    19. Zhao, Jingyang & Ramin, Maryam & Cheng, Vincent & Arhonditsis, George B., 2008. "Plankton community patterns across a trophic gradient: The role of zooplankton functional groups," Ecological Modelling, Elsevier, vol. 213(3), pages 417-436.
    20. Xiaobo Huang & Xuedong Lang & Shuaifeng Li & Wande Liu & Jianrong Su, 2022. "Leaf Carbon, Nitrogen and Phosphorus Stoichiometry in a Pinus yunnanensis Forest in Southwest China," Sustainability, MDPI, vol. 14(10), pages 1-10, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:245:y:2012:i:c:p:3-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.