IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i21p8909-d435396.html
   My bibliography  Save this article

History and Trends in Ecological Stoichiometry Research from 1992 to 2019: A Scientometric Analysis

Author

Listed:
  • Hailiang Li

    (College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China)

  • M. James C. Crabbe

    (Wolfson College, Oxford University, Oxford OX2 6UD, UK
    Institute of Biomedical and Environmental Science & Technology, University of Bedfordshire, Luton LU1 3JU, UK
    School of Life Sciences, Shanxi University, Taiyuan 030006, China)

  • Haikui Chen

    (School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China)

Abstract

Ecological stoichiometry (ES), as an ecological theory, provides a framework for studying various ecological processes, and it has been applied successfully in fields ranging from nutrient dynamics to biogeochemical cycling. Through the application of ES theory, researchers are beginning to understand many diverse ecological topics. The aim of this paper was to identify the main characteristics of ES, especially to clarify the evolution, and potential trends of this field for future ecological studies. We used CiteSpace software to conduct a bibliometric review of ES research publications from 1992 to 2019 extracted from the Web of Science. The results showed that the United States has been a major contributor to this field; approximately half of the top 15 academic institutions contributing to ES research were in the United States. Although the largest number of publications on ES were from China, the impact of these academic papers has thus far been less than that of the papers from other countries. Moreover, none of the top 15 authors or cited authors contributing to publications on ES from 1992 to 2019 were from China. ES research has developed rapidly and has changed from single-discipline ES studies to a multidisciplinary “auxiliary tool” used in different fields. Overall, ES shows great research potential and application value, especially for studies on nutrient cycling, ecosystem sustainability and biogeochemical cycling.

Suggested Citation

  • Hailiang Li & M. James C. Crabbe & Haikui Chen, 2020. "History and Trends in Ecological Stoichiometry Research from 1992 to 2019: A Scientometric Analysis," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:8909-:d:435396
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/21/8909/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/21/8909/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Udriste C & Tevy I, 2019. "Growth of Phytoplankton," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 13(2), pages 9793-9794, January.
    2. David W. Schindler, 2003. "Balancing planets and molecules," Nature, Nature, vol. 423(6937), pages 225-226, May.
    3. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    4. Chaomei Chen & Loet Leydesdorff, 2014. "Patterns of connections and movements in dual-map overlays: A new method of publication portfolio analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(2), pages 334-351, February.
    5. James J. Elser & William F. Fagan & Robert F. Denno & Dean R. Dobberfuhl & Ayoola Folarin & Andrea Huberty & Sebastian Interlandi & Susan S. Kilham & Edward McCauley & Kimberly L. Schulz & Evan H. Sie, 2000. "Nutritional constraints in terrestrial and freshwater food webs," Nature, Nature, vol. 408(6812), pages 578-580, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    2. Rodrigo Marçal Gandia & Fabio Antonialli & Bruna Habib & Arthur De Miranda Neto & Danilo Alves de Lima & Joel Yutaka & André Luiz & Isabelle Nicolaï, 2017. "Autonomous vehicles: Scientometric and bibliometric studies," Post-Print hal-01652939, HAL.
    3. Xinxin Wang & Zeshui Xu & Yong Qin, 2022. "Structure, trend and prospect of operational research: a scientific analysis for publications from 1952 to 2020 included in Web of Science database," Fuzzy Optimization and Decision Making, Springer, vol. 21(4), pages 649-672, December.
    4. Andrej Kastrin & Dimitar Hristovski, 2021. "Scientometric analysis and knowledge mapping of literature-based discovery (1986–2020)," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1415-1451, February.
    5. Rodrigo Marçal Gandia & Fabio Antonialli & Bruna Habib Cavazza & Arthur Miranda Neto & Danilo Alves de Lima & Joel Yutaka Sugano & Isabelle Nicolai & Andre Luiz Zambalde, 2019. "Autonomous vehicles: scientometric and bibliometric review," Transport Reviews, Taylor & Francis Journals, vol. 39(1), pages 9-28, January.
    6. Zongmin Li & Shuyan Xu & Liming Yao, 2018. "A Systematic Literature Mining of Sponge City: Trends, Foci and Challenges Standing Ahead," Sustainability, MDPI, vol. 10(4), pages 1-19, April.
    7. Yanqin Zhang & Xianli You & Shanjun Huang & Minhua Wang & Jianwen Dong, 2022. "Knowledge Atlas on the Relationship between Water Management and Constructed Wetlands—A Bibliometric Analysis Based on CiteSpace," Sustainability, MDPI, vol. 14(14), pages 1-28, July.
    8. Setareh Boshrouei Shargh & Mostafa Zandieh & Ashkan Ayough & Farbod Farhadi, 2024. "Scheduling in services: a review and bibliometric analysis," Operations Management Research, Springer, vol. 17(2), pages 754-783, June.
    9. Jingwei Han & Zhixiong Tan & Maozhi Chen & Liang Zhao & Ling Yang & Siying Chen, 2022. "Carbon Footprint Research Based on Input–Output Model—A Global Scientometric Visualization Analysis," IJERPH, MDPI, vol. 19(18), pages 1-23, September.
    10. Ruifeng Gong & Jian Xue & Laijun Zhao & Oleksandra Zolotova & Xiaoqing Ji & Yan Xu, 2019. "A Bibliometric Analysis of Green Supply Chain Management Based on the Web of Science (WOS) Platform," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    11. Kaihuai Liao & Peiyi Lv & Shixiang Wei & Tianlan Fu, 2022. "A Scientometric Review of Residential Segregation Research: A CiteSpace-Based Visualization," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
    12. Xu, Zeshui & Wang, Xindi & Wang, Xinxin & Skare, Marinko, 2021. "A comprehensive bibliometric analysis of entrepreneurship and crisis literature published from 1984 to 2020," Journal of Business Research, Elsevier, vol. 135(C), pages 304-318.
    13. Keng Yang & Hanying Qi, 2022. "Research on Health Disparities Related to the COVID-19 Pandemic: A Bibliometric Analysis," IJERPH, MDPI, vol. 19(3), pages 1-25, January.
    14. Jianhua Hou & Xiucai Yang & Chaomei Chen, 2018. "Emerging trends and new developments in information science: a document co-citation analysis (2009–2016)," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 869-892, May.
    15. Duo Yang & Jincheng Zhou & Dingpu Shi & Qingna Pan & Dan Wang & Xiaohong Chen & Jiu Liu, 2022. "Research Status, Hotspots, and Evolutionary Trends of Global Digital Education via Knowledge Graph Analysis," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
    16. Meen Chul Kim & Yongjun Zhu & Chaomei Chen, 2016. "How are they different? A quantitative domain comparison of information visualization and data visualization (2000–2014)," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(1), pages 123-165, April.
    17. Liang Zhou & Lin Zhang & Ying Zhao & Ruoshu Zheng & Kaiwen Song, 2021. "A scientometric review of blockchain research," Information Systems and e-Business Management, Springer, vol. 19(3), pages 757-787, September.
    18. Meng-Lin Chen, 2018. "A Data-Driven Critical Review of Second Language Acquisition in the Past 30 Years," Publications, MDPI, vol. 6(3), pages 1-29, July.
    19. Luqi Wang & Xiaolong Xue & Zebin Zhao & Zeyu Wang, 2018. "The Impacts of Transportation Infrastructure on Sustainable Development: Emerging Trends and Challenges," IJERPH, MDPI, vol. 15(6), pages 1-24, June.
    20. Carlos Olmeda-Gómez & Carlos Romá-Mateo & Maria-Antonia Ovalle-Perandones, 2019. "Overview of trends in global epigenetic research (2009–2017)," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1545-1574, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:8909-:d:435396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.