IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i3p695-d1099036.html
   My bibliography  Save this article

Allocation of U.S. Biomass Production to Food, Feed, Fiber, Fuel and Exports

Author

Listed:
  • Christopher Lant

    (Department of Environment and Society, Utah State University, Logan, UT 84322, USA
    Utah Agricultural Experiment Station, Utah State University, Logan, UT 84322, USA)

  • Suman Paudel

    (Department of Environment and Society, Utah State University, Logan, UT 84322, USA)

  • Kaeli Mueller

    (Department of Environment and Society, Utah State University, Logan, UT 84322, USA)

  • Grace Larson

    (Department of Environment and Society, Utah State University, Logan, UT 84322, USA)

  • Gustavo A. Ovando-Montejo

    (Department of Environment and Society, Utah State University, Logan, UT 84322, USA
    Department of Environment and Society, Utah State University, Blanding Utah, 576 W 200 S, Blanding, UT 84511, USA)

  • Jennifer Givens

    (Utah Agricultural Experiment Station, Utah State University, Logan, UT 84322, USA
    Department of Sociology and Anthropology, Utah State University, Logan, UT 84322, USA)

Abstract

This paper analyzes the end uses—food, feed, fiber, fuel, and exports—of biomass production in the U.S. in 1997, 2002, 2007, and 2012. They are also analyzed at the state level in 2012. Biomass production is measured as human appropriation of net primary production (HANPP), an ecological footprint measured as carbon fixed through photosynthesis, derived from data on crop, timber and grazing yields. HANPP was allocated to end uses using publicly available sources from the U.S. Department of Agriculture and internet-based sources publishing data on agricultural trade. HANPP was 717–834 megatons (MT) of carbon per year, which comprised 515–615 MT of crop-based, 105–149 MT timber-based, and 64–76 MT of grazed HANPP. Livestock feed commanded the largest proportion, but decreased from 395 (50%) to 305 MT (42%) of all HANPP and 320 to 240 MT (58–44%) of crop-based HANPP. The proportion allocated to exports was stable at 118–141 MT (17–18%) of total HANPP and 112–133 MT (21–23%) of crop-based HANPP. Biofiber decreased from 141 MT (18%) to 97 MT (13%) of all HANPP. Biofuel increased strongly from 11 MT to 98 MT, from 1% to 14% of all HANPP and 2% to 18% of crop-based HANPP, surpassing food and biofiber by 2012. Direct food commanded 89–105 MT, the lowest proportion at 12–13% of all HANPP, and 17–18% of crop-based HANPP. The highly fertile Midwest and the drought-prone Intermountain West stand out as regions where a very small percentage of biomass is allocated to direct human food. The high proportions of biomass production allocated to nonfood uses is consistent with the tragedy of ecosystem services and commodification of nature frameworks. Reducing these proportions presents opportunities for improving ecosystem services, food security, and human well-being.

Suggested Citation

  • Christopher Lant & Suman Paudel & Kaeli Mueller & Grace Larson & Gustavo A. Ovando-Montejo & Jennifer Givens, 2023. "Allocation of U.S. Biomass Production to Food, Feed, Fiber, Fuel and Exports," Land, MDPI, vol. 12(3), pages 1-16, March.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:3:p:695-:d:1099036
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/3/695/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/3/695/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    2. Johan Rockström & Will Steffen & Kevin Noone & Åsa Persson & F. Stuart Chapin & Eric F. Lambin & Timothy M. Lenton & Marten Scheffer & Carl Folke & Hans Joachim Schellnhuber & Björn Nykvist & Cynthia , 2009. "A safe operating space for humanity," Nature, Nature, vol. 461(7263), pages 472-475, September.
    3. A. J. Challinor & J. Watson & D. B. Lobell & S. M. Howden & D. R. Smith & N. Chhetri, 2014. "A meta-analysis of crop yield under climate change and adaptation," Nature Climate Change, Nature, vol. 4(4), pages 287-291, April.
    4. Smessaert, Jacob & Missemer, Antoine & Levrel, Harold, 2020. "The commodification of nature, a review in social sciences," Ecological Economics, Elsevier, vol. 172(C).
    5. Marco Springmann & Michael Clark & Daniel Mason-D’Croz & Keith Wiebe & Benjamin Leon Bodirsky & Luis Lassaletta & Wim Vries & Sonja J. Vermeulen & Mario Herrero & Kimberly M. Carlson & Malin Jonell & , 2018. "Options for keeping the food system within environmental limits," Nature, Nature, vol. 562(7728), pages 519-525, October.
    6. Bekele, Elias G. & Lant, Christopher L. & Soman, Sethuram & Misgna, Girmay, 2013. "The evolution and empirical estimation of ecological-economic production possibilities frontiers," Ecological Economics, Elsevier, vol. 90(C), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Birgit Kopainsky & Anita Frehner & Adrian Müller, 2020. "Sustainable and healthy diets: Synergies and trade‐offs in Switzerland," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(6), pages 908-927, November.
    2. Ethan Gordon & Federico Davila & Chris Riedy, 2022. "Transforming landscapes and mindscapes through regenerative agriculture," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(2), pages 809-826, June.
    3. Pierre-Marie Aubert & Baptiste Gardin & Élise Huber & Michele Schiavo & Christophe Alliot, 2021. "Designing Just Transition Pathways: A Methodological Framework to Estimate the Impact of Future Scenarios on Employment in the French Dairy Sector," Agriculture, MDPI, vol. 11(11), pages 1-19, November.
    4. Pierre-Marie Aubert & Baptiste Gardin & Élise Huber & Michele Schiavo & Christophe Alliot, 2021. "Designing Just Transition Pathways: A Methodological Framework to Estimate the Impact of Future Scenarios on Employment in the French Dairy Sector," Post-Print hal-03653089, HAL.
    5. Stefano Di Bucchianico & Federica Cappelli, 2021. "Exploring the theoretical link between profitability and luxury emissions," Working Papers PKWP2114, Post Keynesian Economics Society (PKES).
    6. Siqi Huang & Nik Hadiyan Nik Azman, 2023. "Enhancing Food Security through Digital Inclusive Finance: Evidence from Agricultural Enterprises in China," IJERPH, MDPI, vol. 20(4), pages 1-20, February.
    7. Shaikh, M. Abdullah & Hadjikakou, Michalis & Geyik, Ozge & Bryan, Brett A., 2024. "Assessing global agri-food system exceedance of national cropland limits for linking responsible consumption and production under SDG 12," Ecological Economics, Elsevier, vol. 215(C).
    8. Fanzo, Jessica & Haddad, Lawrence & Schneider, Kate R. & Béné, Christophe & Covic, Namukolo M. & Guarin, Alejandro & Herforth, Anna W. & Herrero, Mario & Sumaila, U. Rashid & Aburto, Nancy J. & Amuyun, 2021. "Viewpoint: Rigorous monitoring is necessary to guide food system transformation in the countdown to the 2030 global goals," Food Policy, Elsevier, vol. 104(C).
    9. Irene Blanco-Gutiérrez & Consuelo Varela-Ortega & Rhys Manners, 2020. "Evaluating Animal-Based Foods and Plant-Based Alternatives Using Multi-Criteria and SWOT Analyses," IJERPH, MDPI, vol. 17(21), pages 1-26, October.
    10. Vermunt, D.A. & Wojtynia, N. & Hekkert, M.P. & Van Dijk, J. & Verburg, R. & Verweij, P.A. & Wassen, M. & Runhaar, H., 2022. "Five mechanisms blocking the transition towards ‘nature-inclusive’ agriculture: A systemic analysis of Dutch dairy farming," Agricultural Systems, Elsevier, vol. 195(C).
    11. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    12. Tonini, Davide & Vadenbo, Carl & Astrup, Thomas Fruergaard, 2017. "Priority of domestic biomass resources for energy: Importance of national environmental targets in a climate perspective," Energy, Elsevier, vol. 124(C), pages 295-309.
    13. Guiomar Carranza-Gallego & Gloria I. Guzmán & Roberto Garcia-Ruíz & Manuel González de Molina & Eduardo Aguilera, 2019. "Addressing the Role of Landraces in the Sustainability of Mediterranean Agroecosystems," Sustainability, MDPI, vol. 11(21), pages 1-16, October.
    14. Lotze-Campen, Hermann & von Witzke, Harald & Noleppa, Steffen & Schwarz, Gerald, 2015. "Science for food, climate protection and welfare: An economic analysis of plant breeding research in Germany," Agricultural Systems, Elsevier, vol. 136(C), pages 79-84.
    15. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    16. Knut Einar Rosendahl & Jon Strand, 2011. "Carbon Leakage from the Clean Development Mechanism," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 27-50.
    17. Nelson, Ewan & Warren, Peter, 2020. "UK transport decoupling: On track for clean growth in transport?," Transport Policy, Elsevier, vol. 90(C), pages 39-51.
    18. Richter, Andries & Dakos, Vasilis, 2015. "Profit fluctuations signal eroding resilience of natural resources," Ecological Economics, Elsevier, vol. 117(C), pages 12-21.
    19. Kriegler, Elmar, 2011. "Comment," Energy Economics, Elsevier, vol. 33(4), pages 594-596, July.
    20. Albert, Osei-Owusu Kwame & Marianne, Thomsen & Jonathan, Lindahl & Nino, Javakhishvili Larsen & Dario, Caro, 2020. "Tracking the carbon emissions of Denmark's five regions from a producer and consumer perspective," Ecological Economics, Elsevier, vol. 177(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:3:p:695-:d:1099036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.