IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i6p770-d823055.html
   My bibliography  Save this article

Coupling a New Version of the Common Land Model (CoLM) to the Global/Regional Assimilation and Prediction System (GRAPES): Implementation, Experiment, and Preliminary Evaluation

Author

Listed:
  • Zhenyi Yuan

    (Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China)

  • Nan Wei

    (Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China)

Abstract

Land surface processes can significantly influence weather and climate. The Common Land Model version 2005 (CoLM2005) has been coupled to the Global Forecast System of the Global/Regional Assimilation and Prediction System (GRAPES_GFS), which is independently developed by the China Meteorological Administration. Since a new version of CoLM has been developed (CoLM2014) with updated soil basic data and parts of hydrological processes, we coupled CoLM2014 with GRAPES_GFS to investigate whether the land surface model can help to improve the prediction skill of the weather forecast model. The forecast results were evaluated against global validation datasets at different forecasting lengths and over various regions. The results demonstrate that GRAPES_GFS coupled with CoLM2005 and CoLM2014 can both well reproduce the spatial patterns and magnitude of atmospheric variables, and the effective predictable lengths of time are up to 3 days on the global scale and even up to 6 days on regional scales. Moreover, the GRAPES_GFS coupled with CoLM2014 outperforms the original one in predicting atmospheric variables. In addition, GRAPES_GFS coupled with both versions of CoLM reproduce acceptably accurate spatial distribution and magnitude of land variables. GRAPES_GFS coupled with CoLM2014 significantly improves the forecast of land surface state variables compared to the one coupled with CoLM2005, and the improvement signal is more notable than that in atmospheric variables. Overall, this study shows that CoLM is suitable for coupling with GRAPES_GFS, and the improvement of the land surface model in a weather forecast model can significantly improve the prediction skill of both atmospheric and land variables.

Suggested Citation

  • Zhenyi Yuan & Nan Wei, 2022. "Coupling a New Version of the Common Land Model (CoLM) to the Global/Regional Assimilation and Prediction System (GRAPES): Implementation, Experiment, and Preliminary Evaluation," Land, MDPI, vol. 11(6), pages 1-25, May.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:6:p:770-:d:823055
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/6/770/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/6/770/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sha Zhou & A. Park Williams & Benjamin R. Lintner & Alexis M. Berg & Yao Zhang & Trevor F. Keenan & Benjamin I. Cook & Stefan Hagemann & Sonia I. Seneviratne & Pierre Gentine, 2021. "Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands," Nature Climate Change, Nature, vol. 11(1), pages 38-44, January.
    2. Sha Zhou & A. Park Williams & Benjamin R. Lintner & Alexis M. Berg & Yao Zhang & Trevor F. Keenan & Benjamin I. Cook & Stefan Hagemann & Sonia I. Seneviratne & Pierre Gentine, 2021. "Publisher Correction: Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands," Nature Climate Change, Nature, vol. 11(3), pages 274-274, March.
    3. Zhiyong Wu & Huihui Feng & Hai He & Jianhong Zhou & Yuliang Zhang, 2021. "Evaluation of Soil Moisture Climatology and Anomaly Components Derived From ERA5-Land and GLDAS-2.1 in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 629-643, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriele Vissio & Marco Turco & Antonello Provenzale, 2023. "Testing drought indicators for summer burned area prediction in Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1125-1137, March.
    2. Hsin Hsu & Paul A. Dirmeyer, 2023. "Soil moisture-evaporation coupling shifts into new gears under increasing CO2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Melo, Leonardo Leite de & Melo, Verônica Gaspar Martins Leite de & Marques, Patrícia Angélica Alves & Frizzone, Jose Antônio & Coelho, Rubens Duarte & Romero, Roseli Aparecida Francelin & Barros, Timó, 2022. "Deep learning for identification of water deficits in sugarcane based on thermal images," Agricultural Water Management, Elsevier, vol. 272(C).
    4. Sha Zhou & A. Park Williams & Benjamin R. Lintner & Kirsten L. Findell & Trevor F. Keenan & Yao Zhang & Pierre Gentine, 2022. "Diminishing seasonality of subtropical water availability in a warmer world dominated by soil moisture–atmosphere feedbacks," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Zhang, Qingsong & Sun, Jiahao & Dai, Changlei & Zhang, Guangxin & Wu, Yanfeng, 2024. "Sustainable development of groundwater resources under the large-scale conversion of dry land into rice fields," Agricultural Water Management, Elsevier, vol. 298(C).
    6. Konstantinos Stefanidis & George Varlas & Anastasios Papadopoulos & Elias Dimitriou, 2021. "Four Decades of Surface Temperature, Precipitation, and Wind Speed Trends over Lakes of Greece," Sustainability, MDPI, vol. 13(17), pages 1-14, September.
    7. Rahman, Khalil Ur & Ejaz, Nuaman & Shang, Songhao & Balkhair, Khaled S. & Alghamdi, Khalid Mohammad & Zaman, Kifayat & Khan, Mahmood Alam & Hussain, Anwar, 2024. "A robust integrated agricultural drought index under climate and land use variations at the local scale in Pakistan," Agricultural Water Management, Elsevier, vol. 295(C).
    8. Erhao Meng & Shengzhi Huang & Qiang Huang & Linyin Cheng & Wei Fang, 2021. "The Reconstruction and Extension of Terrestrial Water Storage Based on a Combined Prediction Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5291-5306, December.
    9. Jinlin Li & Lanhui Zhang, 2021. "Comparison of Four Methods for Vertical Extrapolation of Soil Moisture Contents from Surface to Deep Layers in an Alpine Area," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    10. Pan, Ying & Zhu, Yonghua & Lü, Haishen & Yagci, Ali Levent & Fu, Xiaolei & Liu, En & Xu, Haiting & Ding, Zhenzhou & Liu, Ruoyu, 2023. "Accuracy of agricultural drought indices and analysis of agricultural drought characteristics in China between 2000 and 2019," Agricultural Water Management, Elsevier, vol. 283(C).
    11. Asadollah, Seyed Babak Haji Seyed & Jodar-Abellan, Antonio & Pardo, Miguel Ángel, 2024. "Optimizing machine learning for agricultural productivity: A novel approach with RScv and remote sensing data over Europe," Agricultural Systems, Elsevier, vol. 218(C).
    12. Yanmin Shuai & Yanjun Tian & Congying Shao & Jiapeng Huang & Lingxiao Gu & Qingling Zhang & Ruishan Zhao, 2022. "Potential Variation of Evapotranspiration Induced by Typical Vegetation Changes in Northwest China," Land, MDPI, vol. 11(6), pages 1-19, May.
    13. Wang, Xiaoyi & Corzo, Gerald & Lü, Haishen & Zhou, Shiliang & Mao, Kangmin & Zhu, Yonghua & Duarte, Santiago & Liu, Mingwen & Su, Jianbin, 2024. "Sub-seasonal soil moisture anomaly forecasting using combinations of deep learning, based on the reanalysis soil moisture records," Agricultural Water Management, Elsevier, vol. 295(C).
    14. Xiao, Xin & Ming, Wenting & Luo, Xuan & Yang, Luyi & Li, Meng & Yang, Pengwu & Ji, Xuan & Li, Yungang, 2024. "Leveraging multisource data for accurate agricultural drought monitoring: A hybrid deep learning model," Agricultural Water Management, Elsevier, vol. 293(C).
    15. Collados-Lara, Antonio-Juan & Baena-Ruiz, Leticia & Pulido-Velazquez, David & Pardo-Igúzquiza, Eulogio, 2022. "Data-driven mapping of hourly wind speed and its potential energy resources: A sensitivity analysis," Renewable Energy, Elsevier, vol. 199(C), pages 87-102.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:6:p:770-:d:823055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.