IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v293y2024ics0378377424000271.html
   My bibliography  Save this article

Leveraging multisource data for accurate agricultural drought monitoring: A hybrid deep learning model

Author

Listed:
  • Xiao, Xin
  • Ming, Wenting
  • Luo, Xuan
  • Yang, Luyi
  • Li, Meng
  • Yang, Pengwu
  • Ji, Xuan
  • Li, Yungang

Abstract

Accurate monitoring of agricultural droughts in data-scarce areas remains a challenge due to their intricate spatiotemporal patterns. Deep learning represents a promising approach for developing efficient drought monitoring models. In this study, a hybrid deep learning model, combining convolutional neural network and random forest (CNN-RF), is proposed to monitor agricultural droughts in a mountainous region located in Southwest China. The model integrates multisource data obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensor, Global Land Data Assimilation System (GLDAS), Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS) and digital elevation model (DEM) to reproduce a station-based 3-month Standardized Precipitation Evapotranspiration Index (SPEI-3) during 2001–2020. Performance evaluation of the proposed model utilized an in situ soil moisture dataset and grain yields as benchmarks. The results demonstrated the superiority of the CNN-RF model over both the CNN and RF models in terms of estimating SPEI-3 and forecasting drought categories, as quantified by the lowest root mean square error (RMSE<0.4), the highest correlation coefficient (CC>0.9) and the multi-class receiver operating characteristic (ROC) based area under curves (AUC) (AUC=0.86). The CNN-RF model successfully reproduced the spatial heterogeneity of the drought pattern while maintaining temporal and spatial consistency with actual drought conditions. Notably, strong consistency was observed between the simulated SPEI-3 and the 3-month Standardized Soil Moisture Index (SSMI-3) (CC=0.42, p < 0.01). Moreover, the model-estimated drought areas of cropland in the winter and early spring months exhibited a significant correlation with summer harvest grain yields (CC<−0.45, p < 0.05). Another advantage of the CNN-RF model is its ability to generalize well with limited training samples. This study introduces a scalable, simple, and efficient method for reliably monitoring agricultural droughts over large areas by leveraging freely available multisource data, which can also be easily adapted for monitoring agricultural droughts in other vegetated regions with limited ground observations.

Suggested Citation

  • Xiao, Xin & Ming, Wenting & Luo, Xuan & Yang, Luyi & Li, Meng & Yang, Pengwu & Ji, Xuan & Li, Yungang, 2024. "Leveraging multisource data for accurate agricultural drought monitoring: A hybrid deep learning model," Agricultural Water Management, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:agiwat:v:293:y:2024:i:c:s0378377424000271
    DOI: 10.1016/j.agwat.2024.108692
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424000271
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108692?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Puyu & Wang, Bin & Liu, De Li & Yu, Qiang, 2019. "Machine learning-based integration of remotely-sensed drought factors can improve the estimation of agricultural drought in South-Eastern Australia," Agricultural Systems, Elsevier, vol. 173(C), pages 303-316.
    2. Yu, Jingxin & Zhang, Xin & Xu, Linlin & Dong, Jing & Zhangzhong, Lili, 2021. "A hybrid CNN-GRU model for predicting soil moisture in maize root zone," Agricultural Water Management, Elsevier, vol. 245(C).
    3. Jun He & Xiao-Hua Yang & Jian-Qiang Li & Ju-Liang Jin & Yi-Ming Wei & Xiao-Juan Chen, 2015. "Spatiotemporal variation of meteorological droughts based on the daily comprehensive drought index in the Haihe River basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 199-217, February.
    4. Markus Reichstein & Gustau Camps-Valls & Bjorn Stevens & Martin Jung & Joachim Denzler & Nuno Carvalhais & Prabhat, 2019. "Deep learning and process understanding for data-driven Earth system science," Nature, Nature, vol. 566(7743), pages 195-204, February.
    5. Dai, Meng & Huang, Shengzhi & Huang, Qiang & Leng, Guoyong & Guo, Yi & Wang, Lu & Fang, Wei & Li, Pei & Zheng, Xudong, 2020. "Assessing agricultural drought risk and its dynamic evolution characteristics," Agricultural Water Management, Elsevier, vol. 231(C).
    6. Zhiyong Wu & Huihui Feng & Hai He & Jianhong Zhou & Yuliang Zhang, 2021. "Evaluation of Soil Moisture Climatology and Anomaly Components Derived From ERA5-Land and GLDAS-2.1 in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 629-643, January.
    7. Li, Jiale & Li, Yu & Yin, Lei & Zhao, Quanhua, 2024. "A novel composite drought index combining precipitation, temperature and evapotranspiration used for drought monitoring in the Huang-Huai-Hai Plain," Agricultural Water Management, Elsevier, vol. 291(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Israel R. Orimoloye & Adeyemi O. Olusola & Johanes A. Belle & Chaitanya B. Pande & Olusola O. Ololade, 2022. "Drought disaster monitoring and land use dynamics: identification of drought drivers using regression-based algorithms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1085-1106, June.
    2. Pan, Ying & Zhu, Yonghua & Lü, Haishen & Yagci, Ali Levent & Fu, Xiaolei & Liu, En & Xu, Haiting & Ding, Zhenzhou & Liu, Ruoyu, 2023. "Accuracy of agricultural drought indices and analysis of agricultural drought characteristics in China between 2000 and 2019," Agricultural Water Management, Elsevier, vol. 283(C).
    3. Wang, Xiaoyi & Corzo, Gerald & Lü, Haishen & Zhou, Shiliang & Mao, Kangmin & Zhu, Yonghua & Duarte, Santiago & Liu, Mingwen & Su, Jianbin, 2024. "Sub-seasonal soil moisture anomaly forecasting using combinations of deep learning, based on the reanalysis soil moisture records," Agricultural Water Management, Elsevier, vol. 295(C).
    4. Licheng Liu & Wang Zhou & Kaiyu Guan & Bin Peng & Shaoming Xu & Jinyun Tang & Qing Zhu & Jessica Till & Xiaowei Jia & Chongya Jiang & Sheng Wang & Ziqi Qin & Hui Kong & Robert Grant & Symon Mezbahuddi, 2024. "Knowledge-guided machine learning can improve carbon cycle quantification in agroecosystems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Zhang, Yitong & Hao, Zengchao & Zhang, Yu, 2023. "Agricultural risk assessment of compound dry and hot events in China," Agricultural Water Management, Elsevier, vol. 277(C).
    6. Rozenstein, Offer & Fine, Lior & Malachy, Nitzan & Richard, Antoine & Pradalier, Cedric & Tanny, Josef, 2023. "Data-driven estimation of actual evapotranspiration to support irrigation management: Testing two novel methods based on an unoccupied aerial vehicle and an artificial neural network," Agricultural Water Management, Elsevier, vol. 283(C).
    7. Jiang, Hou & Lu, Ning & Huang, Guanghui & Yao, Ling & Qin, Jun & Liu, Hengzi, 2020. "Spatial scale effects on retrieval accuracy of surface solar radiation using satellite data," Applied Energy, Elsevier, vol. 270(C).
    8. Omidreza Mikaili & Majid Rahimzadegan, 2022. "Investigating remote sensing indices to monitor drought impacts on a local scale (case study: Fars province, Iran)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2511-2529, April.
    9. Deng, Juntao & Pan, Shijia & Zhou, Mingu & Gao, Wen & Yan, Yuncai & Niu, Zijie & Han, Wenting, 2023. "Optimum sampling window size and vegetation index selection for low-altitude multispectral estimation of root soil moisture content for Xuxiang Kiwifruit," Agricultural Water Management, Elsevier, vol. 282(C).
    10. Zhang, Qingsong & Sun, Jiahao & Dai, Changlei & Zhang, Guangxin & Wu, Yanfeng, 2024. "Sustainable development of groundwater resources under the large-scale conversion of dry land into rice fields," Agricultural Water Management, Elsevier, vol. 298(C).
    11. Ruchika Nanwani & Md Mahmudul Hasan & Silvia Cirstea, 2023. "Techniques used to predict climate risks: a brief literature survey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 925-951, September.
    12. Wen Zhang & Jing Li & Yunhao Chen & Yang Li, 2019. "A Surrogate-Based Optimization Design and Uncertainty Analysis for Urban Flood Mitigation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4201-4214, September.
    13. Ning Luo & Qingfeng Meng & Puyu Feng & Ziren Qu & Yonghong Yu & De Li Liu & Christoph Müller & Pu Wang, 2023. "China can be self-sufficient in maize production by 2030 with optimal crop management," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Feng, Jiaojiao & Wang, Weizhen & Xu, Feinan & Wang, Shengtang, 2024. "Evaluating the ability of deep learning on actual daily evapotranspiration estimation over the heterogeneous surfaces," Agricultural Water Management, Elsevier, vol. 291(C).
    15. Tuan Minh Cao & Sang Hyeon Lee & Ji Yong Lee, 2023. "The Impact of Natural Disasters and Pest Infestations on Technical Efficiency in Rice Production: A Study in Vietnam," Sustainability, MDPI, vol. 15(15), pages 1-16, July.
    16. Tao He & Wenya Zhang & Hanwen Zhang & Jinliang Sheng, 2023. "Estimation of Manure Emissions Issued from Different Chinese Livestock Species: Potential of Future Production," Agriculture, MDPI, vol. 13(11), pages 1-17, November.
    17. Mohanad A. Deif & Ahmed A. A. Solyman & Mohammed H. Alsharif & Seungwon Jung & Eenjun Hwang, 2021. "A Hybrid Multi-Objective Optimizer-Based SVM Model for Enhancing Numerical Weather Prediction: A Study for the Seoul Metropolitan Area," Sustainability, MDPI, vol. 14(1), pages 1-17, December.
    18. Zhang, Shuangyi & Li, Xichen, 2021. "Future projections of offshore wind energy resources in China using CMIP6 simulations and a deep learning-based downscaling method," Energy, Elsevier, vol. 217(C).
    19. Feng Gao & Yuhu Zhang & Xiulin Ren & Yunjun Yao & Zengchao Hao & Wanyuan Cai, 2018. "Evaluation of CHIRPS and its application for drought monitoring over the Haihe River Basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 155-172, May.
    20. Natalie Teale & David A. Robinson, 2022. "Long-term variability in atmospheric moisture transport and relationship with heavy precipitation in the eastern USA," Climatic Change, Springer, vol. 175(1), pages 1-23, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:293:y:2024:i:c:s0378377424000271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.