IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i4p575-d793936.html
   My bibliography  Save this article

Ecological Grassland Restoration—A South African Perspective

Author

Listed:
  • Clinton Carbutt

    (Scientific Services, Ezemvelo KZN Wildlife, Cascades 3202, South Africa
    School of Life Sciences, University of KwaZulu-Natal, Scottsville 3209, South Africa)

  • Kevin Kirkman

    (School of Life Sciences, University of KwaZulu-Natal, Scottsville 3209, South Africa)

Abstract

The principal drivers of Grassland Biome conversion and degradation in South Africa include agricultural intensification, plantation forestry, urban expansion and mining, together with invasive non-native plants and insidious rural sprawl. This biome is poorly conserved and in dire need of restoration, an ecologically centred practice gaining increasing traction given its wide application to people and biodiversity in this emerging culture of renewal. The pioneering proponent of restoration in South Africa is the mining industry, primarily to restore surface stability using vegetation cover. We noticed a historical progression from production-focussed non-native pastures to more diverse suites of native species and habitats in the restoration landscape. This paradigm shift towards the proactive “biodiversity approach” necessitates assisted natural regeneration, mainly through revegetation with grasses, using plugs, sods and/or seeds, together with long-lived perennial forbs. We discuss key management interventions such as ongoing control of invasive non-native plants, the merits of fire and grazing, and the deleterious impacts of fertilisers. We also highlight areas of research requiring further investigation. The “biodiversity approach” has limitations and is best suited to restoring ecological processes rather than attempting to match the original pristine state. We advocate conserving intact grassland ecosystems as the key strategy for protecting grassland biodiversity, including small patches with disproportionately high biodiversity conservation value.

Suggested Citation

  • Clinton Carbutt & Kevin Kirkman, 2022. "Ecological Grassland Restoration—A South African Perspective," Land, MDPI, vol. 11(4), pages 1-25, April.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:4:p:575-:d:793936
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/4/575/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/4/575/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elizabeth T. Borer & Eric W. Seabloom & Daniel S. Gruner & W. Stanley Harpole & Helmut Hillebrand & Eric M. Lind & Peter B. Adler & Juan Alberti & T. Michael Anderson & Jonathan D. Bakker & Lori Biede, 2014. "Herbivores and nutrients control grassland plant diversity via light limitation," Nature, Nature, vol. 508(7497), pages 517-520, April.
    2. Luis Palazzesi & Oriane Hidalgo & Viviana D. Barreda & Félix Forest & Sebastian Höhna, 2022. "The rise of grasslands is linked to atmospheric CO2 decline in the late Palaeogene," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Clinton Carbutt & Dave I. Thompson, 2021. "Mountain Watch: How LT(S)ER Is Safeguarding Southern Africa’s People and Biodiversity for a Sustainable Mountain Future," Land, MDPI, vol. 10(10), pages 1-27, September.
    4. Christopher N. Kaiser-Bunbury & James Mougal & Andrew E. Whittington & Terence Valentin & Ronny Gabriel & Jens M. Olesen & Nico Blüthgen, 2017. "Ecosystem restoration strengthens pollination network resilience and function," Nature, Nature, vol. 542(7640), pages 223-227, February.
    5. David Moreno-Mateos & Edward B. Barbier & Peter C. Jones & Holly P. Jones & James Aronson & José A. López-López & Michelle L. McCrackin & Paula Meli & Daniel Montoya & José M. Rey Benayas, 2017. "Anthropogenic ecosystem disturbance and the recovery debt," Nature Communications, Nature, vol. 8(1), pages 1-6, April.
    6. A. S. MacDougall & K. S. McCann & G. Gellner & R. Turkington, 2013. "Diversity loss with persistent human disturbance increases vulnerability to ecosystem collapse," Nature, Nature, vol. 494(7435), pages 86-89, February.
    7. Weyer, Vanessa D. & Truter, Wayne F. & Lechner, Alex M. & Unger, Corinne J., 2017. "Surface-strip coal mine land rehabilitation planning in South Africa and Australia: Maturity and opportunities for improvement," Resources Policy, Elsevier, vol. 54(C), pages 117-129.
    8. Diana H. Wall & Uffe N. Nielsen & Johan Six, 2015. "Soil biodiversity and human health," Nature, Nature, vol. 528(7580), pages 69-76, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedro Daleo & Juan Alberti & Enrique J. Chaneton & Oscar Iribarne & Pedro M. Tognetti & Jonathan D. Bakker & Elizabeth T. Borer & Martín Bruschetti & Andrew S. MacDougall & Jesús Pascual & Mahesh Sank, 2023. "Environmental heterogeneity modulates the effect of plant diversity on the spatial variability of grassland biomass," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Chunming Li & Jianshe Chen & Xiaolin Liao & Aaron P. Ramus & Christine Angelini & Lingli Liu & Brian R. Silliman & Mark D. Bertness & Qiang He, 2023. "Shorebirds-driven trophic cascade helps restore coastal wetland multifunctionality," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Eric W. Seabloom & Maria C. Caldeira & Kendi F. Davies & Linda Kinkel & Johannes M. H. Knops & Kimberly J. Komatsu & Andrew S. MacDougall & Georgiana May & Michael Millican & Joslin L. Moore & Luis I., 2023. "Globally consistent response of plant microbiome diversity across hosts and continents to soil nutrients and herbivores," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Lin-Lin Wang & Zachary Y. Huang & Wen-Fei Dai & Yong-Ping Yang & Yuan-Wen Duan, 2024. "Mixed effects of honey bees on pollination function in the Tibetan alpine grasslands," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Baodi Sun & Yinru Lei & Lijuan Cui & Wei Li & Xiaoming Kang & Manyin Zhang, 2018. "Addressing the Modelling Precision in Evaluating the Ecosystem Services of Coastal Wetlands," Sustainability, MDPI, vol. 10(4), pages 1-15, April.
    6. Manh-Toan Ho & Thanh-Huyen T. Nguyen & Minh-Hoang Nguyen & Viet-Phuong La & Quan-Hoang Vuong, 2022. "Virtual tree, real impact: how simulated worlds associate with the perception of limited resources," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-12, December.
    7. Diana Turrión & Luna Morcillo & José Antonio Alloza & Alberto Vilagrosa, 2021. "Innovative Techniques for Landscape Recovery after Clay Mining under Mediterranean Conditions," Sustainability, MDPI, vol. 13(6), pages 1-18, March.
    8. David Pires & Valeria Orlando & Raymond L. Collett & David Moreira & Sofia R. Costa & Maria L. Inácio, 2023. "Linking Nematode Communities and Soil Health under Climate Change," Sustainability, MDPI, vol. 15(15), pages 1-23, July.
    9. Xingqi Zou & Qing Yang & Qinru Wang & Bin Jiang, 2024. "Measuring the system resilience of project portfolio network considering risk propagation," Annals of Operations Research, Springer, vol. 340(1), pages 693-721, September.
    10. Yi-Xuan Lu & Si-Ting Wang & Guan-Xin Yao & Jing Xu, 2023. "Green Total Factor Efficiency in Vegetable Production: A Comprehensive Ecological Analysis of China’s Practices," Agriculture, MDPI, vol. 13(10), pages 1-25, October.
    11. Rachunok, Benjamin & Nateghi, Roshanak, 2020. "The sensitivity of electric power infrastructure resilience to the spatial distribution of disaster impacts," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    12. Robert Beyer & Tim Rademacher, 2021. "Species Richness and Carbon Footprints of Vegetable Oils: Can High Yields Outweigh Palm Oil’s Environmental Impact?," Sustainability, MDPI, vol. 13(4), pages 1-10, February.
    13. Georgios Psyllos & Ioannis Hadjigeorgiou & Panayiotis G. Dimitrakopoulos & Thanasis Kizos, 2022. "Grazing Land Productivity, Floral Diversity, and Management in a Semi-Arid Mediterranean Landscape," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    14. Yue Wang & Yongchun Yang, 2024. "Analysis of the Heterogeneous Coordination between Urban Development Levels and the Ecological Environment in the Chinese Grassland Region (2000–2020): A Case Study of the Inner Mongolia Autonomous Re," Land, MDPI, vol. 13(7), pages 1-28, June.
    15. Zhifeng Zhang & Yuping Tang & Hongyi Pan & Caiyi Yao & Tianyi Zhang, 2022. "Assessment of the Ecological Protection Effectiveness of Protected Areas Using Propensity Score Matching: A Case Study in Sichuan, China," IJERPH, MDPI, vol. 19(8), pages 1-15, April.
    16. Plaas, Elke & Meyer-Wolfarth, Friederike & Banse, Martin & Bengtsson, Jan & Bergmann, Holger & Faber, Jack & Potthoff, Martin & Runge, Tania & Schrader, Stefan & Taylor, Astrid, 2019. "Towards valuation of biodiversity in agricultural soils: A case for earthworms," Ecological Economics, Elsevier, vol. 159(C), pages 291-300.
    17. Abdullah Kaviani Rad & Angelika Astaykina & Rostislav Streletskii & Yeganeh Afsharyzad & Hassan Etesami & Mehdi Zarei & Siva K. Balasundram, 2022. "An Overview of Antibiotic Resistance and Abiotic Stresses Affecting Antimicrobial Resistance in Agricultural Soils," IJERPH, MDPI, vol. 19(8), pages 1-27, April.
    18. S. Bhuvaneshwari & Hiroshan Hettiarachchi & Jay N. Meegoda, 2019. "Crop Residue Burning in India: Policy Challenges and Potential Solutions," IJERPH, MDPI, vol. 16(5), pages 1-19, March.
    19. Morgan Faith Schebella & Delene Weber & Lisa Schultz & Philip Weinstein, 2019. "The Wellbeing Benefits Associated with Perceived and Measured Biodiversity in Australian Urban Green Spaces," Sustainability, MDPI, vol. 11(3), pages 1-28, February.
    20. Chen Fan & Yongzhan Chen & Qinxi Dong & Jing Wei & Meng Zou, 2023. "Deformation Characteristics of Combined Heavy Metals-Contaminated Soil Treated with nZVI through the Modified Slurry Consolidation Method," Sustainability, MDPI, vol. 15(24), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:4:p:575-:d:793936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.