IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i12p2334-d1008416.html
   My bibliography  Save this article

Development of a Systems Model for Assessing Pathways to Resilient, Sustainable, and Profitable Agriculture in New Zealand

Author

Listed:
  • Clémence Vannier

    (Department of Civil and Natural Resources Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
    Manaaki Whenua–Landcare Research, Lincoln 7608, New Zealand)

  • Thomas A. Cochrane

    (Department of Civil and Natural Resources Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand)

  • Peyman Zawar-Reza

    (School of Earth and Environment, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand)

  • Larry Bellamy

    (Department of Civil and Natural Resources Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand)

Abstract

There is a clear research gap in understanding how future pathways and disruptions to the New Zealand (NZ) agricultural system will have an impact on the environment and productivity. Agriculture is in a period of significant change due to market disruptions, climate change, increasingly stringent environmental regulations, and emerging technologies. In NZ, agriculture is a key sector of the economy, therefore government and industry need to develop policies and strategies to respond to the risks and opportunities associated with these disruptors. To address this gap, there is a need to develop an assessment tool to explore pathways and interventions for increasing agricultural profitability, resilience, and sustainability over the next 5–30 years. A decision support tool was developed through Stella Architect, bringing together production, market values, land use, water use, energy, fertiliser consumption, and emissions from agricultural sectors (dairy, beef, sheep, cereals, horticulture, and forests). The parameters are customisable by the user for scenario building. Two future trend scenarios (Business as usual, Optimisation and technology) and two breakaway scenarios (Carbon farming, Reduction in dairy demand) were simulated and all met carbon emissions goals, but profitability differed. Future environmental regulations can be met by adjusting levers associated with technology, carbon offsets, and land use. The model supports the development and assessment of pathways to achieve NZ’s national agriculture goals and has the potential to be scaled globally.

Suggested Citation

  • Clémence Vannier & Thomas A. Cochrane & Peyman Zawar-Reza & Larry Bellamy, 2022. "Development of a Systems Model for Assessing Pathways to Resilient, Sustainable, and Profitable Agriculture in New Zealand," Land, MDPI, vol. 11(12), pages 1-32, December.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:12:p:2334-:d:1008416
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/12/2334/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/12/2334/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wen-Hsien Tsai, 2020. "Carbon Emission Reduction—Carbon Tax, Carbon Trading, and Carbon Offset," Energies, MDPI, vol. 13(22), pages 1-7, November.
    2. John M. Antle & Srabashi Ray, 2020. "Sustainable Agricultural Development," Palgrave Studies in Agricultural Economics and Food Policy, Palgrave Macmillan, number 978-3-030-34599-0, November.
    3. Diaz-Rainey, Ivan & Tulloch, Daniel J., 2018. "Carbon pricing and system linking: Lessons from the New Zealand Emissions Trading Scheme," Energy Economics, Elsevier, vol. 73(C), pages 66-79.
    4. Johan Lilliestam & Anthony Patt & Germán Bersalli, 2021. "The effect of carbon pricing on technological change for full energy decarbonization: A review of empirical ex‐post evidence," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    5. Trommsdorff, Max & Kang, Jinsuk & Reise, Christian & Schindele, Stephan & Bopp, Georg & Ehmann, Andrea & Weselek, Axel & Högy, Petra & Obergfell, Tabea, 2021. "Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    6. Dhunny, A.Z. & Doorga, J.R.S. & Allam, Z. & Lollchund, M.R. & Boojhawon, R., 2019. "Identification of optimal wind, solar and hybrid wind-solar farming sites using fuzzy logic modelling," Energy, Elsevier, vol. 188(C).
    7. Engel, Stefanie, 2016. "The Devil in the Detail: A Practical Guide on Designing Payments for Environmental Services," International Review of Environmental and Resource Economics, now publishers, vol. 9(1-2), pages 131-177, July.
    8. Michael J. Mouat & Russell Prince, 2018. "Cultured meat and cowless milk: on making markets for animal-free food," Journal of Cultural Economy, Taylor & Francis Journals, vol. 11(4), pages 315-329, July.
    9. Norman Siebrecht, 2020. "Sustainable Agriculture and Its Implementation Gap—Overcoming Obstacles to Implementation," Sustainability, MDPI, vol. 12(9), pages 1-27, May.
    10. Vogeler, Iris & Thomas, Steve & van der Weerden, Tony, 2019. "Effect of irrigation management on pasture yield and nitrogen losses," Agricultural Water Management, Elsevier, vol. 216(C), pages 60-69.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kangas, Johanna & Ollikainen, Markku, 2022. "A PES scheme promoting forest biodiversity and carbon sequestration," Forest Policy and Economics, Elsevier, vol. 136(C).
    2. Hongpeng Guo & Zhihao Lv & Junyi Hua & Hongxu Yuan & Qingyu Yu, 2021. "Design of Combined Auction Model for Emission Rights of International Forestry Carbon Sequestration and Other Pollutants Based on SMRA," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    3. Haoran Zhang & Rongxia Zhang & Guomin Li & Wei Li & Yongrok Choi, 2020. "Has China’s Emission Trading System Achieved the Development of a Low-Carbon Economy in High-Emission Industrial Subsectors?," Sustainability, MDPI, vol. 12(13), pages 1-20, July.
    4. Krexner, T. & Bauer, A. & Gronauer, A. & Mikovits, C. & Schmidt, J. & Kral, I., 2024. "Environmental life cycle assessment of a stilted and vertical bifacial crop-based agrivoltaic multi land-use system and comparison with a mono land-use of agricultural land," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    5. Andrea Amado & Koji Kotani & Makoto Kakinaka & Shunsuke Managi, 2023. "Carbon tax for cleaner-energy transition: A vignette experiment in Japan," Working Papers SDES-2023-6, Kochi University of Technology, School of Economics and Management, revised Oct 2023.
    6. Sahoo, Somadutta & Zuidema, Christian & van Stralen, Joost N.P. & Sijm, Jos & Faaij, André, 2022. "Detailed spatial analysis of renewables’ potential and heat: A study of Groningen Province in the northern Netherlands," Applied Energy, Elsevier, vol. 318(C).
    7. Markova-Nenova, Nonka & Engler, Jan O. & Cord, Anna F. & Wätzold, Frank, 2023. "A Cost Comparison Analysis of Bird-Monitoring Techniques for Result-Based Payments in Agriculture," MPRA Paper 116311, University Library of Munich, Germany.
    8. Daniel Matulić & Željko Andabaka & Sanja Radman & Goran Fruk & Josip Leto & Jakša Rošin & Mirta Rastija & Ivana Varga & Tea Tomljanović & Hrvoje Čeprnja & Marko Karoglan, 2023. "Agrivoltaics and Aquavoltaics: Potential of Solar Energy Use in Agriculture and Freshwater Aquaculture in Croatia," Agriculture, MDPI, vol. 13(7), pages 1-26, July.
    9. Nicole Meinusch & Susanne Kramer & Oliver Körner & Jürgen Wiese & Ingolf Seick & Anita Beblek & Regine Berges & Bernhard Illenberger & Marco Illenberger & Jennifer Uebbing & Maximilian Wolf & Gunter S, 2021. "Integrated Cycles for Urban Biomass as a Strategy to Promote a CO 2 -Neutral Society—A Feasibility Study," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    10. Gorjian, Shiva & Bousi, Erion & Özdemir, Özal Emre & Trommsdorff, Max & Kumar, Nallapaneni Manoj & Anand, Abhishek & Kant, Karunesh & Chopra, Shauhrat S., 2022. "Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    11. Chang, Kai & Chen, Rongda & Chevallier, Julien, 2018. "Market fragmentation, liquidity measures and improvement perspectives from China's emissions trading scheme pilots," Energy Economics, Elsevier, vol. 75(C), pages 249-260.
    12. Kim, Sumin & Kim, Sojung, 2023. "Optimization of the design of an agrophotovoltaic system in future climate conditions in South Korea," Renewable Energy, Elsevier, vol. 206(C), pages 928-938.
    13. Sidemo-Holm, William & Smith, Henrik G. & Brady, Mark V., 2018. "Improving agricultural pollution abatement through result-based payment schemes," Land Use Policy, Elsevier, vol. 77(C), pages 209-219.
    14. Albiona Pestisha & Zoltán Gabnai & Aidana Chalgynbayeva & Péter Lengyel & Attila Bai, 2023. "On-Farm Renewable Energy Systems: A Systematic Review," Energies, MDPI, vol. 16(2), pages 1-25, January.
    15. Rodrigo Luiz Morais-da-Silva & Eduardo Guedes Villar & Germano Glufke Reis & Hermes Sanctorum & Carla Forte Maiolino Molento, 2022. "The expected impact of cultivated and plant-based meats on jobs: the views of experts from Brazil, the United States and Europe," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-14, December.
    16. Randrianarison, Henintsoa & Ramiaramanana, Jeannot & Wätzold, Frank, 2017. "When to Pay? Adjusting the Timing of Payments in PES Design to the Needs of Poor Land-users," Ecological Economics, Elsevier, vol. 138(C), pages 168-177.
    17. Arriagada, Rodrigo & Villaseñor, Adrián & Rubiano, Eliana & Cotacachi, David & Morrison, Judith, 2018. "Analysing the impacts of PES programmes beyond economic rationale: Perceptions of ecosystem services provision associated to the Mexican case," Ecosystem Services, Elsevier, vol. 29(PA), pages 116-127.
    18. Joshua M. Pearce, 2022. "Agrivoltaics in Ontario Canada: Promise and Policy," Sustainability, MDPI, vol. 14(5), pages 1-20, March.
    19. Shirzad, Hossein & Barati, Ali Akbar & Ehteshammajd, Shaghayegh & Goli, Imaneh & Siamian, Narges & Moghaddam, Saghi Movahhed & Pour, Mahdad & Tan, Rong & Janečková, Kristina & Sklenička, Petr & Azadi,, 2022. "Agricultural land tenure system in Iran: An overview," Land Use Policy, Elsevier, vol. 123(C).
    20. Widmer, J. & Christ, B. & Grenz, J. & Norgrove, L., 2024. "Agrivoltaics, a promising new tool for electricity and food production: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:12:p:2334-:d:1008416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.