IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i10p1752-d937037.html
   My bibliography  Save this article

Estimating Groundnut Yield in Smallholder Agriculture Systems Using PlanetScope Data

Author

Listed:
  • Daniel Kpienbaareh

    (Department of Geography, Geology and the Environment, Illinois State University, 104 Felmley Hall, Normal, IL 61790-4000, USA)

  • Kamaldeen Mohammed

    (Department of Geography, University of Western Ontario, 151 Richmond St, London, ON N6A 3K7, Canada)

  • Isaac Luginaah

    (Department of Geography, University of Western Ontario, 151 Richmond St, London, ON N6A 3K7, Canada)

  • Jinfei Wang

    (Department of Geography, University of Western Ontario, 151 Richmond St, London, ON N6A 3K7, Canada)

  • Rachel Bezner Kerr

    (Department of Global Development, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA)

  • Esther Lupafya

    (Soils, Food and Healthy Communities (SFHC), Ekwendeni P.O. Box 36, Malawi)

  • Laifolo Dakishoni

    (Soils, Food and Healthy Communities (SFHC), Ekwendeni P.O. Box 36, Malawi)

Abstract

Crop yield is related to household food security and community resilience, especially in smallholder agricultural systems. As such, it is crucial to accurately estimate within-season yield in order to provide critical information for farm management and decision making. Therefore, the primary objective of this paper is to assess the most appropriate method, indices, and growth stage for predicting the groundnut yield in smallholder agricultural systems in northern Malawi. We have estimated the yield of groundnut in two smallholder farms using the observed yield and vegetation indices (VIs), which were derived from multitemporal PlanetScope satellite data. Simple linear, multiple linear (MLR), and random forest (RF) regressions were applied for the prediction. The leave-one-out cross-validation method was used to validate the models. The results showed that (i) of the modelling approaches, the RF model using the five most important variables (RF5) was the best approach for predicting the groundnut yield, with a coefficient of determination ( R 2 ) of 0.96 and a root mean square error (RMSE) of 0.29 kg/ha, followed by the MLR model ( R 2 = 0.84, RMSE = 0.84 kg/ha); in addition, (ii) the best within-season stage to accurately predict groundnut yield is during the R5/beginning seed stage. The RF5 model was used to estimate the yield for four different farms. The estimated yields were compared with the total reported yields from the farms. The results revealed that the RF5 model generally accurately estimated the groundnut yields, with the margins of error ranging between 0.85% and 11%. The errors are within the post-harvest loss margins in Malawi. The results indicate that the observed yield and VIs, which were derived from open-source remote sensing data, can be applied to estimate yield in order to facilitate farming and food security planning.

Suggested Citation

  • Daniel Kpienbaareh & Kamaldeen Mohammed & Isaac Luginaah & Jinfei Wang & Rachel Bezner Kerr & Esther Lupafya & Laifolo Dakishoni, 2022. "Estimating Groundnut Yield in Smallholder Agriculture Systems Using PlanetScope Data," Land, MDPI, vol. 11(10), pages 1-19, October.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:10:p:1752-:d:937037
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/10/1752/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/10/1752/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kate Ambler & Alan de Brauw & Susan Godlonton, 2018. "Measuring postharvest losses at the farm level in Malawi," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(1), pages 139-160, January.
    2. Edith Olmos-Trujillo & Julián González-Trinidad & Hugo Júnez-Ferreira & Anuard Pacheco-Guerrero & Carlos Bautista-Capetillo & Claudia Avila-Sandoval & Eric Galván-Tejada, 2020. "Spatio-Temporal Response of Vegetation Indices to Rainfall and Temperature in A Semiarid Region," Sustainability, MDPI, vol. 12(5), pages 1-18, March.
    3. Rodney Lunduka & Jacob Ricker-Gilbert & Monica Fisher, 2013. "What are the farm-level impacts of Malawi's farm input subsidy program? A critical review," Agricultural Economics, International Association of Agricultural Economists, vol. 44(6), pages 563-579, November.
    4. Lowder, Sarah K. & Skoet, Jakob & Raney, Terri, 2016. "The Number, Size, and Distribution of Farms, Smallholder Farms, and Family Farms Worldwide," World Development, Elsevier, vol. 87(C), pages 16-29.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammed, Kamaldeen & Batung, Evans & Saaka, Sulemana Ansumah & Kansanga, Moses Mosonsieyiri & Luginaah, Isaac, 2023. "Determinants of mechanized technology adoption in smallholder agriculture: Implications for agricultural policy," Land Use Policy, Elsevier, vol. 129(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schaafsma, Marije & Ferrini, Silvia & Turner, R. Kerry, 2019. "Assessing smallholder preferences for incentivised climate-smart agriculture using a discrete choice experiment," Land Use Policy, Elsevier, vol. 88(C).
    2. Patil, Vikram & Ghosh, Ranjan & Kathuria, Vinish & Farrell, Katharine N., 2020. "Money, Land or self-employment? Understanding preference heterogeneity in landowners’ choices for compensation under land acquisition in India," Land Use Policy, Elsevier, vol. 97(C).
    3. Luis Bauluz & Yajna Govind & Filip Novokmet, 2020. "Global Land Inequality," PSE Working Papers halshs-03022318, HAL.
    4. Yoko Kijima, 2022. "Effect of Nigeria’s e-voucher input subsidy program on fertilizer use, rice production, and household income," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(4), pages 919-935, August.
    5. Islam, Md. Mofakkarul & Sarker, Md. Asaduzzaman & Al Mamun, Md. Abdullah & Mamun-ur-Rashid, Md. & Roy, Debashis, 2021. "Stepping Up versus Stepping Out: On the outcomes and drivers of two alternative climate change adaptation strategies of smallholders," World Development, Elsevier, vol. 148(C).
    6. Livia Marchetti & Valentina Cattivelli & Claudia Cocozza & Fabio Salbitano & Marco Marchetti, 2020. "Beyond Sustainability in Food Systems: Perspectives from Agroecology and Social Innovation," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    7. Raymond Boadi Frempong, 2023. "Do subsidies on seed and fertilizer lead to child labour? Evidence from Malawi," Development Policy Review, Overseas Development Institute, vol. 41(2), March.
    8. Anne Jerneck, 2018. "What about Gender in Climate Change? Twelve Feminist Lessons from Development," Sustainability, MDPI, vol. 10(3), pages 1-20, February.
    9. Holden , Stein & Fischer, Monica, 2015. "Can Adoption of Improved Maize Varieties Help Smallholder Farmers Adapt to Drought? Evidence from Malawi," CLTS Working Papers 1/15, Norwegian University of Life Sciences, Centre for Land Tenure Studies, revised 11 Oct 2019.
    10. Marshall Burke & Lauren Falcao Bergquist & Edward Miguel, 2019. "Sell Low and Buy High: Arbitrage and Local Price Effects in Kenyan Markets," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 134(2), pages 785-842.
    11. Rodríguez del Valle, Adrián & Fernández-Vázquez, Esteban, 2024. "Analyzing market power of the agricultural industry in Asia," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 652-669.
    12. Fisher, Monica & Kandiwa, Vongai, 2014. "Can agricultural input subsidies reduce the gender gap in modern maize adoption? Evidence from Malawi," Food Policy, Elsevier, vol. 45(C), pages 101-111.
    13. Fujimoto, Takefumi & Suzuki, Aya, 2021. "Do Fertilizer and Seed Subsidies Strengthen Farmers' Market Participation? the Impact of Tanzania NAIVS on Farmers' Purchase of Agricultural Inputs and Their Maize-Selling Activities," 2021 Conference, August 17-31, 2021, Virtual 315044, International Association of Agricultural Economists.
    14. SIngh Verma, Juhee & Sharma, Pritee, 2019. "Potential of Organic Farming to Mitigate Climate Change and Increase Small Farmers’ Welfare," MPRA Paper 99994, University Library of Munich, Germany.
    15. Hurley, Mason, 2016. "Re-examining Changes in Farm Size Distributions Worldwide Using a Modified Generalized Method of Moments Approach," Master's Theses and Plan B Papers 249287, University of Minnesota, Department of Applied Economics.
    16. Yuta J. Masuda & Jonathan R.B. Fisher & Wei Zhang & Carolina Castilla & Timothy M. Boucher & Genowefa Blundo‐Canto, 2020. "A respondent‐driven method for mapping small agricultural plots using tablets and high resolution imagery," Journal of International Development, John Wiley & Sons, Ltd., vol. 32(5), pages 727-748, July.
    17. Simons, Andrew M., 2022. "What is the optimal locus of control for social assistance programs? Evidence from the Productive Safety Net Program in Ethiopia," Journal of Development Economics, Elsevier, vol. 158(C).
    18. Koolwal, Gayatri B., 2021. "Improving the measurement of rural women's employment: Global momentum and survey priorities," World Development, Elsevier, vol. 147(C).
    19. Manhisse, Nelson & Ogawa, Keiichi, 2024. "Smallholder households and children’s schooling in primary education in Mozambique," International Journal of Educational Development, Elsevier, vol. 105(C).
    20. Yuewen Huo & Songlin Ye & Zhou Wu & Fusuo Zhang & Guohua Mi, 2022. "Barriers to the Development of Agricultural Mechanization in the North and Northeast China Plains: A Farmer Survey," Agriculture, MDPI, vol. 12(2), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:10:p:1752-:d:937037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.