IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i8p857-d615194.html
   My bibliography  Save this article

Evolution of Habitat Quality and Its Topographic Gradient Effect in Northwest Hubei Province from 2000 to 2020 Based on the InVEST Model

Author

Listed:
  • Mengyao Li

    (Faculty of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China
    Key Laboratory for Geographical Process Analysis & Simulation in Hubei Province, Central China Normal University, Wuhan 430079, China
    Land Science Research Center, Central China Normal University, Wuhan 430079, China)

  • Yong Zhou

    (Faculty of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China
    Key Laboratory for Geographical Process Analysis & Simulation in Hubei Province, Central China Normal University, Wuhan 430079, China
    Land Science Research Center, Central China Normal University, Wuhan 430079, China)

  • Pengnan Xiao

    (Faculty of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China
    Key Laboratory for Geographical Process Analysis & Simulation in Hubei Province, Central China Normal University, Wuhan 430079, China
    Land Science Research Center, Central China Normal University, Wuhan 430079, China)

  • Yang Tian

    (Faculty of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China
    Key Laboratory for Geographical Process Analysis & Simulation in Hubei Province, Central China Normal University, Wuhan 430079, China
    Land Science Research Center, Central China Normal University, Wuhan 430079, China)

  • He Huang

    (Faculty of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China
    Key Laboratory for Geographical Process Analysis & Simulation in Hubei Province, Central China Normal University, Wuhan 430079, China
    Land Science Research Center, Central China Normal University, Wuhan 430079, China)

  • Liang Xiao

    (Faculty of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China
    Key Laboratory for Geographical Process Analysis & Simulation in Hubei Province, Central China Normal University, Wuhan 430079, China
    Land Science Research Center, Central China Normal University, Wuhan 430079, China)

Abstract

Regional land use change and ecological security are important fields and have been popular issues in global change research in recent years. Regional habitat quality is also an important embodiment of the service function and health of ecosystems. Taking Shiyan City of Hubei Province as an example, the spatiotemporal differences in habitat quality in Shiyan City were evaluated using the habitat quality module of the InVEST model and GIS spatial analysis method based on DEM and land use data from 2000, 2005, 2010, 2015, and 2020. According to the habitat quality index values, the habitats were divided into four levels indicating habitat quality: I (very bad), II (bad), III (good), and IV (excellent), and the topographic gradient effect of habitat quality was studied using the topographic position index. The results show the following. (1) The habitat quality of Shiyan City showed relatively high and obvious spatial heterogeneity overall and, more specifically, was high in the northwest and southwest, moderate in the center, and low in the northeast. The higher quality habitats (levels III, IV) were mainly distributed in mountain and hill areas and water areas, while those with lower quality habitats (levels I, II) were mainly distributed in agricultural urban areas. (2) From 2000 to 2020, the overall average habitat quality of Shiyan City first increased, then decreased, and then increased again. Additionally, the habitat area increased with an improvement in the level. There was a trend in habitat transformation moving from low to high quality level, showing a spatial pattern of “rising in the southwest and falling in the northeast”. (3) The habitat quality in the water area and woodland area was the highest, followed by grassland, and that of cultivated land was the lowest. From 2000 to 2020, the habitat quality of cultivated land, woodland, and grassland decreased slightly, while the habitat quality of water increased significantly. (4) The higher the level of the topographic position index, the smaller the change range of land use types with time. The terrain gradient effect of habitat quality was significant. With the increase in terrain level, the average habitat quality correspondingly improved, but the increasing range became smaller and smaller. These results are helpful in revealing the spatiotemporal evolution of habitat quality caused by land use changes in Shiyan City and can provide a scientific basis for the optimization of regional ecosystem patterns and land use planning and management, and they are of great significance for planning the rational and sustainable use of land resources and the construction of an ecological civilization.

Suggested Citation

  • Mengyao Li & Yong Zhou & Pengnan Xiao & Yang Tian & He Huang & Liang Xiao, 2021. "Evolution of Habitat Quality and Its Topographic Gradient Effect in Northwest Hubei Province from 2000 to 2020 Based on the InVEST Model," Land, MDPI, vol. 10(8), pages 1-25, August.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:8:p:857-:d:615194
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/8/857/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/8/857/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kareiva, Peter & Tallis, Heather & Ricketts, Taylor H. & Daily, Gretchen C. & Polasky, Stephen (ed.), 2011. "Natural Capital: Theory and Practice of Mapping Ecosystem Services," OUP Catalogue, Oxford University Press, number 9780199589005.
    2. Ling Xiao & Li Cui & Qun’ou Jiang & Meilin Wang & Lidan Xu & Haiming Yan, 2020. "Spatial Structure of a Potential Ecological Network in Nanping, China, Based on Ecosystem Service Functions," Land, MDPI, vol. 9(10), pages 1-18, October.
    3. Roshan Sharma & Udo Nehren & Syed Ajijur Rahman & Maximilian Meyer & Bhagawat Rimal & Gilang Aria Seta & Himlal Baral, 2018. "Modeling Land Use and Land Cover Changes and Their Effects on Biodiversity in Central Kalimantan, Indonesia," Land, MDPI, vol. 7(2), pages 1-14, May.
    4. Can Zhang & Shiming Fang, 2021. "Identifying and Zoning Key Areas of Ecological Restoration for Territory in Resource-Based Cities: A Case Study of Huangshi City, China," Sustainability, MDPI, vol. 13(7), pages 1-21, April.
    5. Stephen Polasky & Erik Nelson & Derric Pennington & Kris Johnson, 2011. "The Impact of Land-Use Change on Ecosystem Services, Biodiversity and Returns to Landowners: A Case Study in the State of Minnesota," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(2), pages 219-242, February.
    6. Stefano Salata & Gabriele Garnero & Carlo Alberto Barbieri & Carolina Giaimo, 2017. "The Integration of Ecosystem Services in Planning: An Evaluation of the Nutrient Retention Model Using InVEST Software," Land, MDPI, vol. 6(3), pages 1-21, July.
    7. Liping Wang & Shufeng Zheng & Xiang Wang, 2021. "The Spatiotemporal Changes and the Impacts of Climate Factors on Grassland in the Northern Songnen Plain (China)," Sustainability, MDPI, vol. 13(12), pages 1-14, June.
    8. Heying Li & Jiayao Wang & Jianchen Zhang & Fen Qin & Jiyuan Hu & Zheng Zhou, 2021. "Analysis of Characteristics and Driving Factors of Wetland Landscape Pattern Change in Henan Province from 1980 to 2015," Land, MDPI, vol. 10(6), pages 1-15, May.
    9. Caroline Wentling & Felipe S. Campos & João David & Pedro Cabral, 2021. "Pollination Potential in Portugal: Leveraging an Ecosystem Service for Sustainable Agricultural Productivity," Land, MDPI, vol. 10(4), pages 1-14, April.
    10. Xiaoliang Han & Peiyi Lv & Sen Zhao & Yan Sun & Shiyu Yan & Minghao Wang & Xiaona Han & Xiuru Wang, 2018. "The Effect of the Gully Land Consolidation Project on Soil Erosion and Crop Production on a Typical Watershed in the Loess Plateau," Land, MDPI, vol. 7(4), pages 1-19, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thi Thu Vu & Yuan Shen & Hung-Yu Lai, 2022. "Strategies to Mitigate the Deteriorating Habitat Quality in Dong Trieu District, Vietnam," Land, MDPI, vol. 11(2), pages 1-17, February.
    2. Pengnan Xiao & Yong Zhou & Mengyao Li & Jie Xu, 2023. "Spatiotemporal patterns of habitat quality and its topographic gradient effects of Hubei Province based on the InVEST model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6419-6448, July.
    3. Guoyi Cui & Yan Zhang & Feihang Shi & Wenxia Jia & Bohua Pan & Changkun Han & Zhengze Liu & Min Li & Haohao Zhou, 2022. "Study of Spatiotemporal Changes and Driving Factors of Habitat Quality: A Case Study of the Agro-Pastoral Ecotone in Northern Shaanxi, China," Sustainability, MDPI, vol. 14(9), pages 1-23, April.
    4. Hanwen Zhang & Yanqing Lang, 2022. "Quantifying and Analyzing the Responses of Habitat Quality to Land Use Change in Guangdong Province, China over the Past 40 Years," Land, MDPI, vol. 11(6), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanwen Zhang & Yanqing Lang, 2022. "Quantifying and Analyzing the Responses of Habitat Quality to Land Use Change in Guangdong Province, China over the Past 40 Years," Land, MDPI, vol. 11(6), pages 1-23, May.
    2. Ma, Shan & Duggan, Jennifer M. & Eichelberger, Bradley A. & McNally, Brynn W. & Foster, Jeffrey R. & Pepi, Eda & Conte, Marc N. & Daily, Gretchen C. & Ziv, Guy, 2016. "Valuation of ecosystem services to inform management of multiple-use landscapes," Ecosystem Services, Elsevier, vol. 19(C), pages 6-18.
    3. Ruckelshaus, Mary & McKenzie, Emily & Tallis, Heather & Guerry, Anne & Daily, Gretchen & Kareiva, Peter & Polasky, Stephen & Ricketts, Taylor & Bhagabati, Nirmal & Wood, Spencer A. & Bernhardt, Joanna, 2015. "Notes from the field: Lessons learned from using ecosystem service approaches to inform real-world decisions," Ecological Economics, Elsevier, vol. 115(C), pages 11-21.
    4. Léa Tardieu & Laetitia Tufféry, 2019. "From supply to demand factors : what are the determinants of attractiveness for outdoor recreation?," Post-Print hal-02883545, HAL.
    5. Khaleel Muhammed & Aavudai Anandhi & Gang Chen, 2022. "Comparing Methods for Estimating Habitat Suitability," Land, MDPI, vol. 11(10), pages 1-19, October.
    6. Xichen Che & Liang Jiao & Huijun Qin & Jingjing Wu, 2022. "Impacts of Climate and Land Use/Cover Change on Water Yield Services in the Upper Yellow River Basin in Maqu County," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
    7. Sabrina Lai & Federica Leone & Corrado Zoppi, 2018. "Implementing Green Infrastructures beyond Protected Areas," Sustainability, MDPI, vol. 10(10), pages 1-16, October.
    8. Haizhen Chen & Yi Chen & Xiaosong Chen & Xingzhong Zhang & Haowei Wu & Zhihui Li, 2022. "Impacts of Historical Land Use Changes on Ecosystem Services in Guangdong Province, China," Land, MDPI, vol. 11(6), pages 1-18, May.
    9. Xiaojuan Lin & Min Xu & Chunxiang Cao & Ramesh P. Singh & Wei Chen & Hongrun Ju, 2018. "Land-Use/Land-Cover Changes and Their Influence on the Ecosystem in Chengdu City, China during the Period of 1992–2018," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
    10. Turner, Katrine Grace & Anderson, Sharolyn & Gonzales-Chang, Mauricio & Costanza, Robert & Courville, Sasha & Dalgaard, Tommy & Dominati, Estelle & Kubiszewski, Ida & Ogilvy, Sue & Porfirio, Luciana &, 2016. "A review of methods, data, and models to assess changes in the value of ecosystem services from land degradation and restoration," Ecological Modelling, Elsevier, vol. 319(C), pages 190-207.
    11. Xiaoliang Han & Peiyi Lv & Sen Zhao & Yan Sun & Shiyu Yan & Minghao Wang & Xiaona Han & Xiuru Wang, 2018. "The Effect of the Gully Land Consolidation Project on Soil Erosion and Crop Production on a Typical Watershed in the Loess Plateau," Land, MDPI, vol. 7(4), pages 1-19, September.
    12. Léa Tardieu, 2017. "The need for integrated spatial assessments in ecosystem service mapping," Review of Agricultural, Food and Environmental Studies, Springer, vol. 98(3), pages 173-200, December.
    13. Tardieu, Léa & Tuffery, Laëtitia, 2019. "From supply to demand factors: What are the determinants of attractiveness for outdoor recreation?," Ecological Economics, Elsevier, vol. 161(C), pages 163-175.
    14. Paulo A.L.D. Nunes & Pushpam Kumar & Tom Dedeurwaerdere (ed.), 2014. "Handbook on the Economics of Ecosystem Services and Biodiversity," Books, Edward Elgar Publishing, number 15058.
    15. Pengnan Xiao & Yong Zhou & Mengyao Li & Jie Xu, 2023. "Spatiotemporal patterns of habitat quality and its topographic gradient effects of Hubei Province based on the InVEST model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6419-6448, July.
    16. Dainee M. Gibson & John E. Quinn, 2017. "Application of Anthromes to Frame Scenario Planning for Landscape-Scale Conservation Decision Making," Land, MDPI, vol. 6(2), pages 1-17, May.
    17. Qinglong Ding & Yang Chen & Lingtong Bu & Yanmei Ye, 2021. "Multi-Scenario Analysis of Habitat Quality in the Yellow River Delta by Coupling FLUS with InVEST Model," IJERPH, MDPI, vol. 18(5), pages 1-19, March.
    18. Lele, Sharachchandra & Srinivasan, Veena, 2013. "Disaggregated economic impact analysis incorporating ecological and social trade-offs and techno-institutional context: A case from the Western Ghats of India," Ecological Economics, Elsevier, vol. 91(C), pages 98-112.
    19. Min Liu & Jianpeng Fan & Yuanzheng Li & Qizheng Mao, 2023. "Ecosystem Service Optimisation in the Central Plains Urban Agglomeration Based on Land Use Structure Adjustment," Land, MDPI, vol. 12(7), pages 1-27, July.
    20. Brendan Fisher & Stephen Polasky & Thomas Sterner, 2011. "Conservation and Human Welfare: Economic Analysis of Ecosystem Services," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(2), pages 151-159, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:8:p:857-:d:615194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.