IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i12p1355-d697933.html
   My bibliography  Save this article

Topographic Variation in Forest Expansion Processes across a Mosaic Landscape in Western Canada

Author

Listed:
  • Larissa Robinov

    (Department of Biology, University of Regina, Regina, SK S4S 0A2, Canada)

  • Chris Hopkinson

    (Department of Geography, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada)

  • Mark C. Vanderwel

    (Department of Biology, University of Regina, Regina, SK S4S 0A2, Canada)

Abstract

Changes to historic fire and grazing regimes have been associated with the expansion of tree cover at forest–grassland boundaries. We evaluated forest expansion across a mosaic landscape in western Canada using aerial photos, airborne laser scanning, and field transects. The annual rate of forest expansion (0.12%) was on the low end of rates documented across North America and was greater from the 1970s to the 1990s than from the 1990s to 2018. Most forest expansion occurred within 50 m of established forests, and 68% of all tree regeneration in grasslands was within 15 m of the forest edge. The intensity of cattle grazing did not affect the tree regeneration density. Despite the slow pace of land cover change, grassland areas near the forest edge had an average of 20% canopy cover and 9 m canopy height, indicating the presence of tall but sporadic trees. The rate of forest expansion, density of tree regeneration, and tree cover within grasslands were all greater at lower elevations where trembling aspen ( Populus tremuloides ) and white spruce ( Picea glauca ) were the dominant tree species. We conclude that proportions of forest–grassland cover on this landscape are not expected to change dramatically in the absence of major fire over the next several decades.

Suggested Citation

  • Larissa Robinov & Chris Hopkinson & Mark C. Vanderwel, 2021. "Topographic Variation in Forest Expansion Processes across a Mosaic Landscape in Western Canada," Land, MDPI, vol. 10(12), pages 1-18, December.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:12:p:1355-:d:697933
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/12/1355/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/12/1355/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mahesh Sankaran & Niall P. Hanan & Robert J. Scholes & Jayashree Ratnam & David J. Augustine & Brian S. Cade & Jacques Gignoux & Steven I. Higgins & Xavier Le Roux & Fulco Ludwig & Jonas Ardo & Feetha, 2005. "Determinants of woody cover in African savannas," Nature, Nature, vol. 438(7069), pages 846-849, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tchuinté Tamen, A. & Dumont, Y. & Tewa, J.J. & Bowong, S. & Couteron, P., 2017. "A minimalistic model of tree–grass interactions using impulsive differential equations and non-linear feedback functions of grass biomass onto fire-induced tree mortality," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 133(C), pages 265-297.
    2. Cecilia Parracciani & Robert Buitenwerf & Jens-Christian Svenning, 2023. "Impacts of Climate Change on Vegetation in Kenya: Future Projections and Implications for Protected Areas," Land, MDPI, vol. 12(11), pages 1-20, November.
    3. Djeumen, I.V. Yatat & Dumont, Y. & Doizy, A. & Couteron, P., 2021. "A minimalistic model of vegetation physiognomies in the savanna biome," Ecological Modelling, Elsevier, vol. 440(C).
    4. Synodinos, Alexis D. & Tietjen, Britta & Jeltsch, Florian, 2015. "Facilitation in drylands: Modeling a neglected driver of savanna dynamics," Ecological Modelling, Elsevier, vol. 304(C), pages 11-21.
    5. Klaus Kellner & Jaco Fouché & David Tongway & Ricart Boneschans & Helga van Coller & Nanette van Staden, 2022. "Landscape Function Analysis: Responses to Bush Encroachment in a Semi-Arid Savanna in the Molopo Region, South Africa," Sustainability, MDPI, vol. 14(14), pages 1-24, July.
    6. Guo, Tong & Lohmann, Dirk & Ratzmann, Gregor & Tietjen, Britta, 2016. "Response of semi-arid savanna vegetation composition towards grazing along a precipitation gradient—The effect of including plant heterogeneity into an ecohydrological savanna model," Ecological Modelling, Elsevier, vol. 325(C), pages 47-56.
    7. Kenneth R. Young, 2023. "Reflections on the Dynamics of Savanna Landscapes," Land, MDPI, vol. 12(10), pages 1-12, September.
    8. Meyer, Katrin M. & Wiegand, Kerstin & Ward, David & Moustakas, Aristides, 2007. "SATCHMO: A spatial simulation model of growth, competition, and mortality in cycling savanna patches," Ecological Modelling, Elsevier, vol. 209(2), pages 377-391.
    9. Accatino, Francesco & De Michele, Carlo, 2013. "Humid savanna–forest dynamics: A matrix model with vegetation–fire interactions and seasonality," Ecological Modelling, Elsevier, vol. 265(C), pages 170-179.
    10. Akpoué, Kouadio Jean-Philippe & Barot, Sébastien & Raynaud, Xavier & Gignoux, Jacques, 2021. "Modeling the biomass allocation of tree resprout in a fire-prone savanna," Ecological Modelling, Elsevier, vol. 448(C).
    11. Epstein, Graham & Vogt, Jessica & Cox, Michael & Shimek, Luke, 2014. "Confronting problems of method in the study of sustainability," Forest Policy and Economics, Elsevier, vol. 42(C), pages 42-50.
    12. Loudermilk, E.L. & Cropper, W.P. & Mitchell, R.J. & Lee, H., 2011. "Longleaf pine (Pinus palustris) and hardwood dynamics in a fire-maintained ecosystem: A simulation approach," Ecological Modelling, Elsevier, vol. 222(15), pages 2733-2750.
    13. Blanco, Carolina Casagrande & Scheiter, Simon & Sosinski, Enio & Fidelis, Alessandra & Anand, Madhur & Pillar, Valério D., 2014. "Feedbacks between vegetation and disturbance processes promote long-term persistence of forest–grassland mosaics in south Brazil," Ecological Modelling, Elsevier, vol. 291(C), pages 224-232.
    14. Guo, Tong & Weise, Hanna & Fiedler, Sebastian & Lohmann, Dirk & Tietjen, Britta, 2018. "The role of landscape heterogeneity in regulating plant functional diversity under different precipitation and grazing regimes in semi-arid savannas," Ecological Modelling, Elsevier, vol. 379(C), pages 1-9.
    15. Pachzelt, Adrian & Rammig, Anja & Higgins, Steven & Hickler, Thomas, 2013. "Coupling a physiological grazer population model with a generalized model for vegetation dynamics," Ecological Modelling, Elsevier, vol. 263(C), pages 92-102.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:12:p:1355-:d:697933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.